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Abstract 
 
This thesis addresses the development of an end-to-end secure Voice over IP (VoIP) 
conference system.  We are particularly interested in challenges associated with 
deploying such a system in ad-hoc networks containing low bandwidth and/or high 
latency data links.  End-to-end security is handled by the decentralized Public Key Group 
Encryption library (PKGE) developed at Lincoln Laboratory; PKGE allows real-time 
keying of conference users without an on-line central keying authority.   
 
We present a system design and its prototype implementation in accordance with a set of 
appropriate design goals.  The final product demonstrates the feasibility of using PKGE 
in the demanding conditions of VoIP conferencing.  The system development sheds light 
on a number of issues and engineering challenges that ultimately affect call quality, 
functionality, security, and usability, motivating our recommendations for the next 
generation system.   
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1 Introduction 

This thesis explores the feasibility of developing an end-to-end secure Voice over 
Internet Protocol (VoIP) conferencing system using the Public Key Group Encryption 
library (PKGE) [40] implemented at MIT Lincoln Laboratory.  It is part of a larger effort 
to secure dynamic, ad-hoc group communication in disadvantaged networks containing a 
mix of low latency, high bandwidth links and high latency, low bandwidth links; thus, 
designing a system that is optimized for such networks is also considered.  
 
As a primary goal, we aim to design and implement a working proof-of-concept system 
that will shed light on the challenges and potential solutions in VoIP engineering.  To this 
end, this thesis explains the development of a VoIP system, including the design 
decisions, the implementation details, and a barrage of tests for performance, reliability, 
and functionality.  As a final deliverable, we reflect on the success of the system and 
suggest improvements in a second phase development.    
 
We now outline our motivation, and summarize design, implementation, and results. 
 

1.1 Overview and Motivation  

One of the tenets of the Department of Defense (DoD) vision of Network Centric 
Operations and Warfare (NCO/W) [36] is that improved information sharing and 
collaboration ultimately results in improved mission effectiveness. A major part of this 
information exchange is envisioned to be done by dynamic groups of participants, so-
called “Communities of Interests” (CoIs) [18]. 
 
Ideally, CoIs could assemble and communicate on a moment’s notice, without any 
significant overhead.  They would be able to do this with minimal network requirements.  
Information exchange would occur securely, and in real-time through a variety of 
communication modes including text, voice, and video.  One mission for this thesis is to 
contribute to that vision. 
 
Specifically, we design and develop a secure VoIP conferencing proof-of-concept 
system.  A VoIP conference involves multiple users speaking to one another in real-time, 
and can include concurrent speech from multiple sources that must be combined before 
played back.  For security, this project uses PKGE, which is a decentralized group 
encryption and authentication library that allows users to secure communication in real-
time without an online keying authority.  It also allows users to secure communications 
without the excessive message-size overhead implied by other security solutions, such as 
S/MIME [28] and PGP [8].   In fact, message size during keying is virtually independent 
of group size [41].  Previous efforts in [40] have successfully used PKGE in a text chat 
prototype.  We will test PKGE further, by putting the system to use under the more 
demanding conditions of VoIP.     
 
Security is not new to VoIP, but our specific solutions address the DoD communication 
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vision by optimizing for disadvantaged networks, which we define as two or more well-
connected subnets linked with high latency, low bandwidth connections.  Use of PKGE 
for security in such a situation is logical because its low message size overhead should 
not place high requirements on bandwidth.  Of course, this is only helpful if the 
processing cost of PKGE is not prohibitive for high quality voice chat.  Part of our 
motivation is to investigate whether this is the case.   
 
Moreover, our solutions add a number of features that secure commercial VoIP systems 
lack, including end-to-end confidentiality and voice authenticity, and the ability to remain 
available even after the conference creator exits the conference.  Thus, while we are 
contributing to the DoD communication vision, we also make novel extensions to 
securing VoIP technology itself. 

1.2 Summary of Contributions 

Work on this thesis started out with the idea of securing VoIP and a tool for doing it: 
PKGE.  With those two seedlings, our project evolved through numerous designs and 
redesigns, addressing the challenge of engineering a VoIP system around the 
cryptographic backbone of PKGE.  Through it, there have been a few advances that we 
have contributed.   
  
Novel VoIP System Design 
 
The system specified in this document makes two interesting departures from typical 
VoIP systems.  First, it transmits data in a novel way to minimize the impact of low 
bandwidth, high latency links in the network it uses.  While most VoIP programs transmit 
data either directly from peer-to-peer or indirectly between client and server, our system 
blends both concepts for the advantages of each.  The second departure is that it 
compartmentalizes the various functional units, separating them along clearly defined 
interfaces.  Separation allows simple customization for users whose needs differ from 
those that we outline here.  Different functional units are easily swapped in and out, 
provided that they use the appropriate interfaces.   
 
Proof-of-concept Implementation 
 
We have assembled a working system that demonstrates the feasibility of the design we 
describe.  Using Yet Another Telephony Engine (YATE) [17], Pidgin [9], and PKGE, the 
prototype is a useful starting point for future researchers who want to pursue similar 
goals.  It is an extensible implementation that can be easily used by developers to 
experiment with their own designs for VoIP.   
 
PKGE Evaluation and Next Generation Suggestions  
 
Efforts in [40] prove the usability of PKGE in quasi-real-time text based 
communications.  We extend this by using PKGE in a high intensity real-time voice 
communication system.  The difference is subtle, but a text chat system is much slower 
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paced than a VoIP system, based on the differences in data rate.  Chapter 5 shows the 
data processing rate to be in the range of 64 kbps for PKGE in a VoIP system with 
approximately 50 PKGE operations per second.  This is a much more stressful test than a 
text chat system that requires the processing of a few ASCII characters every few 
seconds, limited by the typing rate of its human users.  In short then, we use this project 
to empirically show that PKGE is robust and usable in real-time.   
 
Finally, we suggest how ongoing improvements in the decentralized cryptographic 
library can be used in a next generation VoIP conferencing system.  Specifically, we 
indicate how the additional features of the successor to PKGE, GROK, can be used.  We 
also use the evaluation and lessons learned from this proof-of-concept to make design 
guidelines for the next generation system.   

1.3 Summary of Results and Recommendations 

The main focus of this project was the development of a proof-of-concept VoIP 
application, which is currently in a source repository at Lincoln Lab.  It was successful in 
that the system met design goals for call quality, usability, and security as outlined in 
chapter 2, using the test hardware described in chapter 5.  Notably, call quality 
performance metrics are met despite the overhead of adding PKGE to real-time voice.  
While the system did not meet the functional goal of optimization for disadvantaged 
network, a design was specified, and the results from the proof-of-concept suggest that it 
too could meet performance metrics depending on the type of low bandwidth, high 
latency data link used.  It could achieve total call quality with a TCDL [12] link, and 
tolerable call quality with Inmarsat [4] or Connexion [2] satellite links.  Actual 
development of the disadvantaged network design is required to verify its usability.  For 
links that cannot achieve call quality standards reasonable for typical conversations, users 
can compensate by using a conversation protocol much like that used over high latency 
radio links.     
 
Another important result is that the processing latency from using PKGE, both during key 
distribution and during conversation, is not a serious bottleneck compared to the latency 
over the aforementioned weak links.  PKGE adds on the order of 100 μs of processing 
and latency to send a 20 ms voice message, and about the same amount of time to receive 
one.  This is compared to the 325 ms time needed to transmit data across an Inmarsat or 
Connexion link.  PKGE adds roughly 30-35 ms to package and send a message with a 
new group key.  This emphasizes the importance of implementing the disadvantaged 
network design.  Along the same lines, the message size overhead during key distribution 
is almost independent of group size, allowing scalability, as we expected.   
 
An important lesson shown by processing latency figures is that concurrent speech from 
multiple users during a conference increases the delay by a factor equal to the number of 
speakers.  That is, the cost of sending or receiving a voice message (with a predetermined 
key) when there are three concurrent speakers is roughly 300 μs.  Our design and 
implementation assume that such a scenario is rare, minimizing the impact of the overall 
quality of the conference.  If this is not rare, this is a scalability limitation for future 
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designers to account for.     
 
Several more improvements are possible, particularly in the way of reliability and 
usability.  The proof-of-concept system uses a Pidgin plug-in as the interface through 
which users join and leave conferences.  However, our implementation provides no way 
to notify users when other users are running the plug-in, or are available for voice chat.  
Moreover, the system does not prevent users who are not running the voice chat plug-in 
from joining the conference.  It also makes sense that all components of the system are 
started simultaneously, thereby avoiding these usability problems in most cases.  Thus, 
this is an area where more development will lead to a more complete, robust application. 
 
Similarly, it makes sense to allow multiple applications to use PKGE simultaneously; for 
example, text and voice chat.  Concurrently with this project, Lincoln Lab has been 
developing an improved service, called GROK, which addresses this.  GROK allows 
applications to access a single database of group keys that is consistent across 
applications. A future implementation could integrate text and voice into one seamless 
application.  Users could join multimedia conferences, and then choose to use text, voice, 
or both.  Building on the usability suggestions, other users could see who had voice 
functionality running.  Users could also invite one another to turn their voice system on.   
 
Because multiple applications can use the GROK simultaneously, sharing keys for the 
same groups, it may be possible to improve key distribution.  Our system distributes keys 
as part of the voice stream, which uses UDP.  In order to add reliability to this process, a 
VoIP application using GROK might distribute needed keys using Pidgin’s TCP based 
communication.  This is especially important in the disadvantaged networks where 
bandwidth restrictions cause packet loss.  This optimization is thus left for the future 
developer who also implements the disadvantaged network design.   
 
GROK also allows group keys to be stored and persist in a database even after 
applications terminate.  This eliminates the distribution overhead when an application run 
at a later time requires a key for a group that has been used before.         
 

1.4 Thesis Roadmap 

This thesis begins with a problem definition, walks through a solution, details its 
implementation, and thoroughly evaluates it, assessing where further exploration is 
warranted.  Technical details, along with some background reading, are included in the 
appendixes.  Readers unfamiliar with VoIP and the specific technologies used should 
start there.  Similarly, system users should peruse the installation guide.   
 
Chapter 2 defines the problem we aim to solve with this project.  We review motivation 
and form design goals on this basis.  Chapter 3 uses the design goals to sketch out the 
high-level architecture for the system, analyzing what functional units are needed.   
 
In chapter 4 we get into the nitty-gritty details.  The exact implementation is described, 
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including the specific technologies used and even some relevant code segments that shed 
light on how the system was put together.  We show exactly how each function was 
implemented.   
 
Chapter 5 puts the implementation on trial, measuring it against each design goal set in 
chapters 2 and 3.  We outline a methodology for the performance tests and assess each 
dimension.  The results in part motivate chapter 6, which discusses areas for further 
exploration and recommendations for the next generation system.  The results also 
motivate our final thoughts in chapter 7, the conclusion.   
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2 Problem Statement 

This section continues the discussion of using PKGE to extend the DoD communication 
vision in a VoIP system.  We motivate and define the exact goals we have, based on the 
constraints of using PKGE and deploying the VoIP system in disadvantaged networks.  
Of course, we also consider the basic functional requirements for VoIP and the IP 
telephony community’s standards for call quality.  These goals will form the basis of the 
design we adopt and the steps taken to implement it.  At the end of this thesis, we will 
then evaluate the system against these goals, and apply the results to a next generation 
system based on that evaluation.   

2.1 Considerations and Constraints  

Here we examine the main considerations before solidifying design goals.  
Considerations include the environment of deployment and the details of PKGE. 

2.1.1 Deployment Environment 

Because our system should advance the DoD communication capabilities and its vision 
for collaboration in ad hoc networks, we should maximize the range of networks we 
support.  A system that requires a 100 Mbit/s Ethernet would not be suitable, for 
example.  Rather, it is important that the system can perform as well as possible on Wide-
Area Networks (WAN) including those that contain both low-latency, high bandwidth 
data links and high latency, low bandwidth data links.   
 

AEH

 

  
Figure 2.1 A Disadvantaged Tactical Network. 
 
Consider for example a scenario involving a number of airborne parties collaborating via 
satellite with mission control on the ground, much like in Figure 2.1.  The ground system 
may be very well connected and the airborne users may be very well connected, but the 
satellite between the two networks may be have a 2.4 kbit per second maximum 
bandwidth, such as an Iridium Satellite connection [5].  These links also have a high 
transmission latency of 2 seconds.  Such a disadvantaged network containing two subnets 
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connected with a weak data link will form the basis of our design.  It may be impossible 
to get the same performance metrics on a geographically distributed disadvantaged 
network as on an Ethernet, but versatility mandates that we optimize for both situations.  
This will play into the design goals.         
 
Just as we consider a range of network options, we also consider a range of deployment 
scenarios.  That is, the system should be usable both in highly equipped state-of-the-art 
facilities such as research labs, and in reduced-resource situations such as isolated 
soldiers with only as much computational power as they can carry.  The system should 
minimize hardware requirements, and maximize ease of use.   
 
Thus, in our design we should consider how to create a VoIP system that can adapt to 
disadvantaged situations, allowing the maximum scope of deployability.  Similarly, we 
want to minimize the system requirements in terms of hardware.    

2.1.2 PKGE Details 

In order to test its usability in a VoIP system, PKGE will provide the cryptography for 
our system.  This includes encrypting/decrypting messages, providing message 
authenticity, and ensuring data integrity.  Encryption is keeping message contents 
confidential, authentication is providing proof that the sender is among the group 
members, and integrity refers to ensuring that message contents have not changed 
between sender and receiver.   Here we examine the technical details of PKGE and the 
various modes of operation it supports so that we can use it properly in the VoIP system.   

PKGE is a decentralized dynamic-group based cryptosystem, in that it allows users to 
encrypt and sign messages for distribution to a group of users without relying on a real-
time key distribution authority.  That is, with PKGE, symmetric keys are securely 
distributed by the users themselves.  The symmetric keys are then used to encrypt and 
sign messages during a conversation.  When the group changes, a new key is distributed 
securely to the new group using a modified Boneh-Gentry-Waters (BGW) [20] broadcast 
encryption system and digital signatures. This key depends on the security epoch, which 
is the duration of time that a key is valid.  After an epoch ends, the keys associated with it 
expire and are deleted from the system. 

Existing approaches for decentralized encryption exist, such as S/MIME for secure email.  
In this approach, a user encrypts a random symmetric key using the private key of the 
intended recipient and encrypts the message with the symmetric key.  The enciphered key 
is attached to the message ciphertext.  For multiple recipients, this process is performed 
multiple times, making the message space linear with the number of recipients. [41] 
reports that a message sent to 50 users using 64-byte public keys would require 3200 
bytes of space.  This might stress the bandwidth limitations of our deployment 
environment.  Other approaches for real-time decentralized keying also exist.  In short, 
such schemes generally involve multiple communication rounds during the keying 
process, which is undesirable over a high latency link.  A link speed ~100 ms is slow 
enough as it is without having to use it more than once during key distribution.  
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PKGE does not have these weaknesses.  Instead, users distribute new keys as the group 
changes with a single constant-size message.  What’s more, this message is small, having 
only 200-300 bytes of overhead because it uses the BGW.  The Boneh scheme is entirely 
stateless, meaning that each message includes headers for determining the symmetric key 
used to encrypt the message.   

PKGE uses this scheme for distribution of 256-bit AES [38] keys whenever group 
membership changes.  These keys are used in Cipher Block Chaining (CBC) mode to 
encrypt message payloads.  After a group key is distributed, PKGE can operate in one of 
several stateful modes to reduce message overhead.  Subsequent messages may not 
contain the headers necessary to obtain the symmetric key, on the assumption that users 
have stored in locally.   Specifically, PKGE has four modes of operation, with different 
optimizations.   

 

KeyGroup Payload
AES  

256 CBC 
BGW05

lock 

ECDSA

 

Figure 2.2 PKGE-Sealed Message, Stateless Protocol 
 

- The Stateless protocol does not save any information in between messages.  Thus, 
each message includes the group it is intended for, a key encapsulation using 
BGW, the payload encrypted with AES, and a 224-bit ECDSA digital signature 
for authenticity and integrity.  The full message picture is shown in Figure 2.2.   

- The Optimistic protocol is a stateful protocol that saves a copy of the symmetric 
key defined in the first message sent to a group.  All subsequent communications 
to this group use the same symmetric key, without including the headers that 
allow computation of the key.  This works because the receivers of the first 
message store a copy of the key as well.  This way, computation time on the 
sending and receiving end is reduced because neither sender nor receiver has to 
recalculate the key.  Also, message sizes decrease, because the headers are not 
included in messages.  Messages are authenticated with the same digital signature 
as in the Stateless protocol.  Thus, after the first, messages look like Figure 2.3, 
including session key identification information, the encrypted payload, and the 
signature.  
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id Payload 

AES  
256 CBC 

ECDSA 

Figure 2.3 PKGE-Sealed Message, Optimistic Protocol 

 

- The Sessions or Pessimistic protocol is the same as the Optimistic protocol, 
except the sender includes key defining headers in each message until she/he has 
observed each receiver use the key, thereby confirming its receipt.  In this case, 
message size and computation time decrease only once the headers are omitted.     

- The Lean protocol is similar to the Optimistic, but uses a keyed SHA1 hash of the 
message instead of a digital signature.  This is called an HMAC.  This reduces the 
computation time, because the HMAC can be computed more quickly than the 
ECDSA.  Also, the HMAC is limited to the first four bytes of the hash, reducing 
message size. 

 

 

id Payload 

AES  
256 CBC 

HMAC 

Figure 2.4 PKGE-Sealed Message, Lean Protocol 

We will refer to the process of encrypting a message and adding a signature or HMAC as 
sealing the message.  Decrypting and verifying the message will be referred to as 
unsealing.  These terms are derived from the PKGE API, which encapsulates their 
functionality into seal and unseal methods. 

All of the protocols except Stateless enable unique symmetric keys to be used for each 
group that exists throughout the duration of a conversation.  This enables 
forward/backward secrecy, because as the group changes, so does the key.  In the 
Stateless protocol, forward/backward secrecy is achieved because the key changes after 
every message. Similarly, they all account for authentication and integrity verification, 
either with digital signatures or HMACs.   Note that forward/backward secrecy means 
that as users join and leave the group, they are not privy to communications from before 
joining or after leaving.   

However, these protocols have different strengths and weaknesses.  The Stateless 
protocol has the most fault tolerance, followed by Pessimistic.  This is because Stateless 
does not assume anything, save for the public key infrastructure.  The Pessimistic scheme 
is fault tolerant against messages lost in transition; however, user malfunctions that result 
in lost keys are not handled.  Optimistic and Lean do not tolerate key loss in transition, 
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because they only distribute the key once.  However, they are the fastest and have the 
smallest message size.  Lean in particular should be the fastest and smallest.    

In fact, in [40] some performance metrics were taken.  PKGE seal (encrypt and sign) 
costs roughly 10-20 ms after keys are distributed in the Optimistic and Sessions protocol, 
and seal before the keys are placed costs roughly 80-100 ms.  Thus, the Optimistic 
scheme will consistently take 10-20 ms for seal after the first message, while the Stateless 
protocol will consistently take 80-100 ms.  The unseal operation (decrypt and verify) was 
equally costly1.  These measurements were based on 550 byte messages and used the 
following reasonable hardware: Powerbook G4, 1GHz Power PC, 1GB SDRAM.   

The author did not test the Lean protocol, which should be even faster because it avoids a 
digital signature in favor of the HMAC.  The digital signature is the clear bottleneck for 
the Optimistic protocol, because AES in CBC mode can encrypt at roughly 46 megabytes 
per second on similar hardware, based on OpenSSL[14] figures.  In fact, OpenSSL  speed 
tests show that the digital signature takes several orders of magnitude longer.  On the 
other hand, HMAC can be computed at a rate of 16.7 megabytes per second on similar 
hardware.  Our test results in chapter 5 will verify that this is the fastest protocol.   

The message size advantages of using PKGE in a real-time group conversation suggest 
that it is useful in disadvantaged networks.  However, it’s not clear whether computation 
time will prove too much for VoIP quality.  This depends on the design goals that we set 
in the next section.  These performance metrics and estimations will suggest whether the 
system will succeed.   

2.2 Design Goals 

Here, we take into account the considerations of the previous chapters and define the 
goals for our VoIP system.  We define what a conference system is, and describe our 
goals for functionality, security, and performance. In Chapters 3 and 4 we discuss a 
design and a proof-of-concept implementation of a secure VoIP conferencing system, and 
in Chapter 5 evaluate how well this implementation achieves the goals set forth in this 
chapter.   

2.2.1 Conference Features 

A conference is an audio conversation among a group of participants.  This is not the 
same as a set of separate phone calls for each pair of participants in a group.  Conferences 
are different because all concurrent audio is mixed into a single voice stream and played 
back to users, mimicking a real-life conversation among multiple people. 

Additional conference features include the ability for participants to join and leave the 
conference at any time; this should not significantly degrade the conversation for 
remaining users.  The conference should be consistently available, in that its persistence 
                                                 
1 During our tests in chapter five, a bug was discovered in PKGE that caused the computation time for both 
seal and unseal to be roughly 5 ms longer than necessary.   
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is not dependent on any specific user being part of the conference.  A conference should 
be scalable in that call quality should not degrade significantly as more users join.  As a 
standard, a conference should support at least six users. This goal is somewhat arbitrary, 
but is motivated by the idea that a network must contain at least three nodes to be 
considered a network.  Thus, if we want to support deployment on a WAN consisting of 
three different interconnected subunits, each of which contains at least two users, then we 
have to support at least six users.      

Continuing the idea of WAN deployment, the conference system should be versatile 
enough that it can be deployed in a disadvantaged network containing high latency and/or 
low bandwidth links.  In such a situation the design should minimize dependence on the 
weak link to best achieve the remaining design goals.  It is possible that certain weak 
links make it impossible to achieve quality goals (section 2.2.3), however, the design 
should be adaptable to get as close as possible.    

2.2.2 End-to-End Security  

We define security in the context of PKGE and VoIP as: 

Confidentiality - Parties outside the conference cannot comprehend the audio data 
passed between current conference participants.  

Forward/Backward Secrecy – A user cannot understand the communications that 
continue after she/he leaves the conference, nor can she/he understand 
communications intercepted before joining.  This is implied by confidentiality, 
but makes explicit what it means to be part of the conference group.   

Perfect Forward Secrecy – If long-term secrets, such as public/private key pairs, 
are compromised outside of the security epoch, the prior conference 
communications should not be compromised.   

Group Authentication and Integrity – Participants can verify that communication 
came from within the conference group and has not changed from what the sender 
originally intended.  Sender authentication is not a goal because voice 
transmissions are inherently authenticated by the unique voice prints of the users.  

Note that we do not include admission authorization as part of the security definition.  
This project is an experiment in providing cryptographically secure communications and 
showing the usefulness of PKGE.  Because authorization is an entirely different project 
than simply securing communications, it is not considered.  We do, however, leave the 
system customizable enough that future developers can add this feature.   

Security functions can be added to any layer of a software system, or even to multiple 
layers.  For example, a system may use IPsec [29] for network layer security or Transport 
Layer Security (TLS) [27] for transport layer.  We adopt end-to-end data security, 
meaning that encrypt/decrypt operations are added to the end user applications only.  This 
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excludes models in which data is decrypted and re-encrypted by a server sitting between 
endpoints.  

Such strictness is motivated by the trust model, which includes only the conference 
participants and the key creation authority for the pre-placed PKI used by PKGE.  If the 
trust model were extended to include external VoIP processing servers, the data would be 
vulnerable to an extra point of attack for hackers.  The extended trust model would also 
assume users trust the server administrators with the conference data.  It makes sense to 
minimize points of attack and restrict trust as much as possible.  The decentralized nature 
of PKGE lends itself to use in end-to-end secure systems, thus allowing PKGE to 
integrate well with this VoIP application.   

End-to-End security also prevents data from being exposed to other layers of the system 
that the application runs on.  Thus other applications should not be able to eavesdrop on 
an end-to-end secure VoIP application running in parallel.  This is particularly important 
for shared computers. 

Thus, in order to restrict trust to the minimum possible set of users and limit the extent of 
data exposure on a system, we adopt end-to-end security as a design goal.      

2.2.3 Call Quality and Performance  

Informally, we want clear, understandable voice data to facilitate a normal conversation 
interaction. For our project, this translates to reducing time between voice production and 
playback (delay or lag), and reducing packet loss on the network. For each of these 
metrics, it is more important to optimize quality during the call itself than to optimize the 
call setup or optimize the joining and leaving of users.  This is because, most likely, the 
call setup and the joins and leaves of users will account for only a fraction of the call 
duration.  Also, users are more likely to tolerate a one time delay during call setup than a 
consistent lag during conversation.   

The main determinants of VoIP call quality, according to[43], are speech coding 
distortion, packet loss, packet delay, loudness, and echo.  Because this thesis is concerned 
with adding security to calls, we will focus our evaluation on the qualities that our system 
is likely to affect.  That is, it is pointless to assess our system on qualities that are out of 
scope, such as loudness and echo.  Similarly, speech coding is out of scope, so we will 
rely on the quality of speech coding for the Public Switch Telephone Network (PSTN) by 
using the same audio codec.  Specifically, we use the mu-law companding algorithm 
specified by International Telecommunications Union (ITU) recommendation G.711 
[25].   By using G.711, the extent of call quality determined by the codec is guaranteed to 
be consistent with the PSTN.  Our evaluation will thus concentrate on packet loss and 
delay.   
 
Packet delay is caused by a number of factors including transmission latency, encryption 
cost, and audio compression and decompression. [22] specifies basic audio delay 
guidelines, measured from end-to-end or “mouth-to-ear”.  Delays beyond 400 ms are 
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considered unacceptable for most applications, while delays below 150 ms experience 
“transparent interactivity.”  However, applications that involve a significant deal of 
interaction between users may be affected by delays of 100 ms.  Because the system’s 
intended use is not specified at this point, we want to enable the greatest range of 
applications, including those with high interactivity.  Thus, we ambitiously adopt 100 ms 
of audio delay as an upper bound for total quality, and 400 ms as an upper bound for 
tolerable quality.   
 
Packet loss, which is caused by a number of factors including bandwidth restrictions and 
transmission errors, is generally very detrimental to VoIP.  With the codec we have 
adopted, G.711, packet loss of even 1% can significantly degrade call quality [21].  Thus 
we adopt 1% as the bound for tolerable quality.  Because of the sensitivity to packet loss 
with this codec, we adopt 0% as the standard for total quality.  The acceptable packet loss 
levels depend on the codec used, with lossy codecs tolerating even less.   
 

Quality Max Packet Loss Max Packet Delay 
Total ~0% 100 ms 

Tolerable 1 % 400 ms 
Table 2.1 Call Quality Standards 
 
Other call quality standards can be used, such as the Mean Opinion Score (MOS) [24] 
and the E-Model [23].  MOS is purely subjective rating based on the experiences of 
system testers.  While user experience is highly appropriate for testing a phone system, it 
is unattractive here for several two main reasons.  First, we lack the resources and time to 
recruit and train an adequate sample size of testers and subsequently run tests that will 
allow us to gauge success or failure.  Second, the rating is subjective and its results are 
difficult to put in absolute terms for comparison with other systems, such as the PSTN.   
 
E-Model is a rating system adapted specifically for VoIP systems and includes a mapping 
to MOS ratings.  Luckily, E-Model relies primarily on an objective formula that uses the 
various factors of call degradation in VoIP, including packet loss and packet delay.  E-
Model is comprehensive enough that it breaks each factor down into subcategories, such 
as packet loss in transit, packet loss in queues, packet loss in encryption buffer, and 
packet loss to due to bit errors.   

Because my objective is to determine call quality in a variety of scenarios for the system 
we have designed and implemented, the exact nature of call quality degradation is 
irrelevant.  Thus we choose to evaluate quality based on the simple two factors outlined 
above.  Based on these standards, tests of system overhead will be used to determine the 
minimum performance requirements for the network used.   

2.2.4 Usability 

The system should be robust and usable. It should be easy to install and use, with an 
intuitive interface. It should require few clicks to join or leave a conference. Any status or 
errors should be conveniently conveyed to the user.  Graphic displays of membership and 
call information are preferred.  Usability will be evaluated subjectively.  
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In addition to usable interfaces, the system should be usable based on the resources 
required to run it.  As a goal, we strive to maximize the range of hardware on which the 
performance and functional goals are achievable. 

2.3 Summary   

In summary, we have made the following decisions for our VoIP system: 
 

- Disadvantaged networks containing two or more well-connected subnets 
joined by weak data links are our deployment environment.   

 
- PKGE is used for securing the voice communications of the conference. 

 
- Conference goals include functionality, end-to-end security, call quality, 

and usability.  
 
The next section will put these ideas into a cohesive conference system design.   
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3 Design  

This section details the design of a secure VoIP conference system.  The system will 
satisfy a number of design goals for security, functionality, performance, and usability.  
As an additional constraint, security features use the Public Key Group Encryption 
(PKGE) service developed at MIT Lincoln Lab.  This project tests the usefulness of 
PKGE in the context of real-time security needs, specifically, VoIP.   

A summary of the previous sections design goals follows: 

Conference Features: We define conferences as groups of users communicating 
amongst themselves with real-time voice.  Users can come, can go, and the conference 
availability does depend on any specific user.  The conference should also be scalable 
and adaptable to disadvantaged networks.   

End-to-End Security:  The security goals are confidentiality, forward/backward secrecy, 
perfect forward secrecy, authenticity, and integrity.   

Call Quality: We aim for total quality, defined as audio lag less than 100 ms and packet 
loss close to 0%.  Tolerable quality is considered audio lag of less than 400 ms and 
packet loss of less than 1%.  When total quality cannot be achieved due to physical 
limitations, tolerable quality becomes the goal.  These goals are consistent with [21] and 
[24]. 

Usability:  Goals include reducing resource requirements, using graphic interfaces where 
possible, and reducing installation and usage complexity.   
 
As an overarching design principle to achieve these goals, we adopt a “divide and 
conquer” strategy to the different functional units of our system. By building separate 
modules for different functions and connecting them to meet specific design goals, the 
system can support customization. Functional separation ensures that achieving the 
design goals of one module does not interfere with achieving the design goals of another.  
Furthermore, by connecting modules along well-defined interfaces, we can easily swap in 
different implementations for a module if the need arises; for example, to optimize 
different performance metrics or to meet revised system requirements for functionality as 
well.    

Thus we have divided the system into three functional units. Modules exist for: voice 
data transmission and processing, conference membership management, and security.  
This section deals with defining the function and interaction of these three components, 
and making clear references to how they achieve the design goals.  The final high-level 
design looks like Figure 3.1.   
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Figure 3.1 System Component Functional Separation 

The security module provides a service that allows data to be encrypted/decrypted and 
verified.  The voice module handles audio compression and decompression, maintaining 
IP address info of conference participants, creating connections between users, passing 
data onto the network, as well as capturing and playing back audio.  Membership 
management involves maintaining the list of usernames in the conference, displaying this 
information to users themselves, tracking the mapping of usernames to IP addresses, and 
allowing users to join and leave.  Naturally the membership module and the voice module 
must communicate so the voice module knows where to transmit data.  Similarly the 
voice module and the security module must interact to secure the voice data.  The voice 
module passes raw audio data to the security module, which seals it and passes it back.  
On the receiving end, the security module unseals the data.   

We could split the software along different functional lines, but these three partitions are 
the most logical. Voice data and membership data are separated because the security 
goals for the two are different.  That is, the goals outlined for end-to-end security in 2.2.2 
apply to voice communications, not membership information.  Membership information 
is not considered confidential in our project, so it is nonsensical to treat it the same way 
as we treat voice data.  Security is separate because we want to use PKGE.  By keeping it 
as a separate module invoked through function calls, the system can be easily modified to 
use a different implementation for security.  In fact, the next generation system will swap 
out PKGE for GROK to take advantage of its improved features.  Because GROK has the 
same interface, this transition will be trivial.   

The voice data module could have been split up further; for example it could be split into 
voice routing module and a voice compression module. However, there are no obvious 
gains from this because we have no desire to experiment with changes in audio codecs.  
Our focus is the feasibility of adding encryption and authentication to VoIP conferences. 
Also, further division would complicate implementation and add to latency from inter 
process communication.  

3.1 Transmitting Voice Data  

In this section, we present our model for processing voice data and transmitting it 
between the multiple participants of a conference call.  We focus on providing a design 
that is versatile enough to achieve our design goals, even in disadvantaged networks 
containing low bandwidth and high latency data links.   
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Thus, we present a dual-mode system that can take advantage of high bandwidth 
networks, but is also adaptable to low bandwidth situations.  In either case, it attempts to 
reduce processing and transmission latency by minimizing the number of costly seal and 
unseal operations, and minimizing the network congestion.  Network congestion 
minimization also reduces dropped packets, the second measure of call quality.   

3.1.1 The Dual Mode Model  

 

 
Figure 3.2 P2P Subnets Connected by Low Bandwidth Links 
 
Our conference system is characterized by self-sufficient endpoint software that handles 
all aspects of the voice module.  This includes the audio playback/capture, audio codecs, 
and voice transmission directly between peers.  The endpoints do not rely on servers for 
anything voice related, but rather use strictly peer-to-peer voice transmission when 
deployed in well-connected networks.  However, the system is configurable to networks 
containing low bandwidth, high latency data links.  The system is optimized for such a 
network by minimizing the amount of voice traffic across such as link.  
 
When weak links exist in the system, the network is separated into well-connected 
subnets on either side of the weak links.  Such a scenario is exemplified by a conference 
call between several parties in an airplane and several parties in a terrestrial network.  
The airborne endpoints are connected amongst themselves in a high performance local 
network as is the ground crew.  However, the two subnets are connected via a low 
bandwidth satellite link.  We call this the two-tiered model. 
 
Traffic over the link is reduced by ensuring that only a single voice stream is passed 
across at any given time.  This is accomplished by electing an aggregator node in each 
subnet.  While the rest of the subnet is communicating in a purely peer-to-peer way, the 
aggregator nodes act as intermediate hops between nodes on opposite sides of the weak 
link.  An aggregator will mix the voice data produced by all concurrent speakers on its 
subnet and transmit the combined stream across the weak link to the aggregator on the 
other subnet.  The aggregator on the other subnet will transmit this voice stream to each 
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local endpoint.  Each endpoint then mixes this voice stream with any voice streams 
coming from within the subnet.  The final product is played  back to the local user.  
 
In this fashion, we prevent the scenario in which multiple speakers in one subnet all 
attempt to send data across the low bandwidth link.  The required bandwidth would 
increase by a factor equal to the number of speakers.  If the bandwidth demands exceeded 
the bandwidth available on the weak link, there would be reduced performance in the due 
to lost packets.    
 
In a typical voice conference, only one source is transmitting data at any given time, 
reducing the function of the aggregator to blindly forwarding data to the aggregator on 
the other subnet, which in turn forwards it on to the endpoints on its subnet.  No 
intermediate encryption or decryption need take place.  In the rare case that there are 
multiple speakers at the same time on a subnet, the aggregator decrypts, mixes, and 
encrypts the signal before routing it to the next aggregator.  In this case, there is an 
increased cost of extra seal/unseal operations, but this is traded off for the possible 
dropped packets and increased latency that would have been introduced into the system 
from the additional traffic across the weak link.   
 
The only constant cost introduced by the aggregators is that of the extra node through 
which data passes even when aggregation does not occur.  That is, even when there is 
only one speaker, the data is still routed to the aggregator before crossing the weak link, 
which is an extra hop.  To reduce this cost, the processing that occurs at this step is very 
low.   

The aggregator acts as a finite state machine with two states: the aggregation state and the 
forwarding state.  Starting in the forwarding state, the aggregator automatically forwards 
data to other subnets before processing.  If it begins to receive data from multiple 
sources, it switches to the second state, aggregation.  In this state, it decrypts data it 
receives from each source, mixes it, encrypts the new signal and only then forwards a 
single stream to outside subnets.  If it detects that there is only a single voice stream, it 
reverts back to the forwarding state.   

Despite having aggregators that are necessary for communicating to outside subnets, 
proper implementation allows this system to remain headless.  Even if an aggregator 
leaves the conference, the conference persists because the endpoints in a subnet can 
simply elect a new aggregator.  This selection process would be deterministic based on 
conference membership to avoid extra communication.  
 

 
Figure 3.3 Aggregator State Diagram 

 36



 
 
When the weak link is not involved, voice data is sent directly between peers.  This offers 
a number of advantages over a client/server routing model.  P2P routing reduces the 
number of hops in a packet’s path between endpoints.  Each buffer that the packet enters 
will introduce additional latency that decreases call quality.  Moreover, by routing data 
between peers instead of through a sever, there is no single point of failure.  One of the 
design function requirements was for headlessness.  With P2P routing, the conference 
does not depend on any particular participant.   
 
Additionally, P2P routing makes end-to-end encryption simple to implement.  Because 
data goes directly between users, the VoIP application merely encrypts at one end and 
decrypts at the other, thereby achieving end-to-end encryption.  The system could have 
used a server to do some of the data processing, such as audio mixing.  However, the 
server would have to use plaintext voice for the mixing, and thus would have to be able to 
decrypt the audio.  Unless the server is a conference participant itself, this would violate 
our trust model and the end-to-end principle.  The aggregator nodes in the two-tier model 
are conference participants and thus do not violate the trust model.   
 
 

 
Figure 3.4 Peer-to-Peer Routing in a Well-Connected Subnet 
 
P2P within the subnet offers another advantage, reduction of the number of encryption 
and decryption operations.  When transmitting data, each user transmits n-1 streams of 
voice data for a conference of n users, unless UDP multicast is used.  If multicast is used, 
users only need transmit a single stream, which is routed to end users appropriately by the 

 37



multicast implementation.  Regardless of the transmission model, users receive a stream 
of data for each conference member who is speaking.  Despite the number of voice 
streams, because a shared key is used, the speaker need only run one encrypt operation.  
She/he stores the encrypted data and forwards it to the other users.   
 
If there were a server processing data, the server would decrypt and re-encrypt data, 
introducing more computational latency.  Worse yet, the server would have to run a 
different encryption operation for each user, because users each receive a different voice 
stream.  The voice streams are different because a speaker should not hear her/his own 
voice streams.   
 
Thus, this conference system offers a number of advantages.  When transmitting data 
from peer-to-peer, transmission latency is decreased by minimizing the number of 
encryption operations and minimizing the number of hops in a packet’s path.  P2P 
transmission also trivializes implementation of end-to-end security.  In the presence of a 
weak link, the system is adaptable to maintaining these advantages and adhering to 
design goals as much as possible.  Performance degradation due to low bandwidth is 
reduced by minimizing traffic across the link with aggregators.  The aggregators 
themselves reduce their own latency by forwarding traffic with minimal processing when 
there is only a single voice stream.  It is only when multiple voice streams threaten to 
overload the network that the aggregators trade off extra encryption and mixing latency 
for reduced network congestion.   

3.2 Membership Management  

The membership management module contrasts the voice module by using a client/server 
architecture.  A central server maintains a list of usernames and IP addresses in a 
conference.  When a user wants to join the conference, she/he sends a request to the 
server, which admits her/him to the conference, and informs the existing users of the new 
member and her/his IP.  The server also relays the current conference membership to the 
joiner.  The same process takes place when users leave the conference.   
 
Client software handles sending and receiving the join requests and updated conference 
membership information from the server.  It also displays this information to the end 
user, and communicates group membership and member locations to the voice module.  
The client software should have a well-defined interface for voice module 
communication, ensuring that the voice module need not change if a different 
membership module is implemented.   The interface between the two is defined in the 
implementation section. 
 
The client/server model is acceptable in this case because membership information does 
not require end-to-end confidentiality in the design goals.  Thus using a server does not 
violate any constraints.  However, it makes sense to restrict access, because the 
membership of the conference can be considered valuable in some cases.  Thus, our 
system could allow for confidentiality in an extended trust model that includes the server.  
In short, the security goals for membership information are relaxed.  If a future designer 
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adopts goals that include securing membership information from end-to-end, the designer 
should re-implement the module under a different paradigm.  By using the same interface 
with the voice module, no changes need to be made outside of group management.   
 
Using a server for membership management has several advantages over using a peer-to-
peer model as the voice module does.  First, the server makes joining and leaving 
conference simple.  Users need only know the location of the server and issue a single 
request to join.  If the joiner had to send requests itself to all participants, it would need to 
acquire a list of users first, which would add overhead to the join request.  This simplicity 
keeps overhead low and implementation easy.   
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Figure 3.5 Membership Module Design 
 
Furthermore, if there are admission requirements, use of a server allows a single authority 
to make a decision about whether to allow a user to join.  Without it, the existing users 
would need some protocol for negotiating join requests. This protocol would add traffic 
to the network and latency to the join process.  This unnecessary overhead could erode 
call quality.   
 
However, a central server for membership management does introduce a single point of 
failure.  If the manager goes offline, we merely lose the capability to change the 
conference membership; the existing connections for voice transmission handled by the 
other module remain active.  This is another advantage of separating the system 
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components.  Note that even if this server is subverted, or is not a trusted party, the most 
harm it can cause is denial of service.  It cannot view encrypted communications, nor can 
it allow others to view encrypted communications because it does not deal with 
encryption keys.  Thus it remains consistent with design goals. 

The advantages of using a server reduce the overhead required for joining a conference, 
thereby improving call quality.  Thus, the use of a client server membership management 
module helps achieve design goals.   

3.3 Security 

Part of the mission for this thesis is to use PKGE in a real-time VoIP application. Thus 
our security module is PKGE.  However, it is important that PKGE fits into the design 
goals, and is properly integrated with the system as a whole.  
 
PKGE achieves the security goals handily, having been designed with end-to-end security 
in mind.  PKGE is a cryptographic library, and by invoking it from the voice transmission 
module, we ensure that it is used at the application layer.   Moreover, [40] claims 
fulfillment of confidentiality, forward/backward secrecy, perfect forward secrecy, and 
authentication/integrity.   Confidentiality is derived from use of AES symmetric 
encryption on all messages sealed.  Authentication and integrity come from either digital 
signatures of HMACs, depending on the protocol.  Forward/backward secrecy is 
achieved by using unique keys for unique groups, and perfect forward secrecy is achieved 
by re-keying after epochs expire.  Old keys are destroyed at their expiration, making 
saved communication impossible to decrypt outside of its epoch. 
 
Furthermore, PKGE is ideal for usage in group conversations because of the group 
oriented nature of the protocol.  It allows real-time group keying, thereby allowing users 
to join and leave at will, as per design goals.  Moreover, because message size during 
keying is independent of group size, PKGE enables scalability without degrading the 
conference quality, even in low bandwidth situations.   
 
Conference quality is an issue on its own, and PKGE’s performance metrics in [40] 
suggest that call quality goals are achievable, although this is network dependent.  Our 
own measurements in chapter 2 suggest that the overhead of PKGE after keys are 
distributed should be on the order of microseconds when using the Lean protocol, which 
is negligent compared to the design goal for total quality (100 ms total lag).  Keying, 
however, should cause slowdowns on the order of 80-100 ms on the test hardware of 
[40].   

The API for PKGE is simple and useful.  When we want to seal messages, the calling 
program simply invokes the seal method, and invokes unseal for unsealing.  This 
makes the integration with the rest of the system very simple.  Moreover, it fulfills our 
need for simple interfaces that allow future system to use different software components.  
In this case, a future library implementing this interface can be seamlessly swapped in.  
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For these reasons, PKGE will provide a suitable cryptographic backbone for the VoIP 
system.  Of course, because of the component separation principle, we could use a 
different security module with the same interface in future systems if design goals for 
security or performance change.  For this system though, it is appropriate to use PKGE in 
order to test is viability in VoIP.   

3.4 Design Summary  

 

 

Figure 3.6 Block Diagram for End User System w/ Interconnections and Data Flow 
 
In sum then, we choose to divide the VoIP system into three interconnected modules. 
There is a voice data module which will handle call setup and voice data transmission in 
a strictly peer-to-peer manner in order to facilitate end-to-end encryption. This module is 
optimized into a two-tiered network in the presence of high latency, low bandwidth data 
links.  We use a client/server member management module to reduce network congestion 
during member joins and leaves. We use PKGE for the performance benefits of shared 
symmetric key cryptography and key exchanges of fixed message size overhead.  PKGE 
also allows realization of the security design goals.   
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4 Implementation  

Recall that the design specifies three major functional components: membership 
management, voice data transmission and handling, and security. The voice data module 
includes call connection, data transmission, mixing, and audio playback.  Membership 
tracks the changes in the conference group, and voice encryption and authentication is 
implemented by PKGE.  This section outlines how we chose to implement and connect 
each of these in such a way that would remain faithful to the design goals.  

4.1 Architecture and Components  

For the encrypted conference system, we choose to use the open source VoIP engine Yet 
Another Telephony Engine (YATE) to handle the voice data transmission, 
compression/decompression, and mixing. YATE has a SIP stack which we use to 
implement a call connection script to meet the data transmission design specifications.  It 
contains a conference module that allows realization of the conference functionality we 
specified.  It also has a GTK based audio playback client, but we choose to use a different 
freeware VoIP client call X-Lite because of its usability.  Public Key Group Encryption 
(PKGE) developed at Lincoln Lab is used for encrypting and authenticating the voice 
data that YATE handles. The open source chat protocol Jabber[6] is used to maintain and 
communicate conference membership information, which the user accesses with a plug-
in developed for the open source Jabber client Pidgin.  

 

Figure 4.1 System Architecture 
 
When necessary, most communications among the different modules use TCP sockets 
with predefined protocols.  PKGE, however, is packaged as a library that can be invoked 
from YATE with function calls.  The protocols for communication allow any 
implementation for each module to seamlessly integrate into the system, provided that it 
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can understand and use the protocol.  

4.1.1 Voice Data with YATE  

This conceptual module includes call connection, voice routing, audio mixing, audio 
playback, and audio compression/decompression.  Including all of this in one section may 
seem to contradict modular design goals.  However, we combine them because audio 
mixing, compression, and playback are beyond the scope of this project and thus their 
implementation details are irrelevant to us.  While call connection and voice routing 
implementation is important, they are combined because their design goals are the same.  
Moreover, most software telephony engines already combine all five of these together. 
Thus, our logical choice is to use an open source engine that includes all of these 
functions and is extensible enough that we can implement the call connection and voice 
routing that our design calls for.  

This does not mean that all of these pieces must be implemented with the same software.  
It means that we do not require well-defined interfaces and ease of swapping other 
implementations in.  Thus we have free reign to reuse as much code as possible, while 
modifying it to our needs. 

The YATE software PBX is a suitable choice. Like many telephony engines, such as 
SipX and Asterisk, YATE meets the requirements for functionality (compression, 
conference mixing, etc) and is available on multiple platforms. However, YATE stands 
out because the code is highly extensible. For a detailed description, see Appendix A. 
Importantly, the system allows developers to write external Python scripts that control 
call connections by passing messages of a pre-defined protocol to the main system via 
TCP socket. Moreover, the core system itself is extensible enough that we can change 
how data is routed from a client/server design to a peer-to-peer design. Also, we can 
insert encryption calls into the system.  

4.1.1.1 From Client/Server to P2P  

YATE uses a client/server paradigm for conference calls. Our design mandates that data 
is routed directly between peers and encrypted at the endpoints. Morphing the 
client/server PBX into endpoint software seems like a daunting task, but traces through 
YATE code and careful design analysis lend insight on how to do this.  
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Figure 4.2 Comparison of YATE Conference Configurations 
 
In a typical YATE conference call, multiple clients communicate voice data generated by 
their users to a single YATE server, which mixes the data if necessary, and redistributes 
the combined stream to every end user in the conference. Our system requires two 
differences. First, each client runs its own instance of YATE. In fact, we redefine client 
to include an instance of YATE. YATE still receives voice data from each party in the 
conference call. However, the second difference is that the combined stream is only 
transmitted to its local client. All other clients are passed the single stream from the local 
client.  

To understand why this works, realize that each end-user is receiving the combined voice 
stream, because each user runs its own instance of YATE. Because each instance of 
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YATE passes the data generated by its local client to each other instance of YATE, each 
instance of YATE receives all the data necessary to transmit to its local user. The 
diagram in Figure 4.2 should clarify this.  It shows that in the original version of YATE, 
each user communicates with the same instance of YATE, passing its local data and 
receiving the combined stream.  In the modified version, each user communicates with its 
own instance of YATE, which passes locally produced data to other users’ instances in 
exchange for their locally produced data.  Each user’s instance of YATE produces the 
combined stream for the user to playback.   

Based on this it should become clear how simple it is to change the code of the system for 
this behavior. In the new system, YATE is transmitting and receiving the same streams of 
data as in the client server model, the only thing that changes is who receives what and 
from whom.  

In the code shown below (Code Chunk 4.1), the YATE conference module passes the 
data buffer buf to a ConfConsumer co, which is encapsulated in a ConfChan 
channel object. buf contains the combined voice stream for all the users in the 
conference and each conference channel is the data line to a different end user.  The co 
for the channel object passes the data through different parts of the system including 
audio compression and an RTP formatting module.  Eventually the data reaches the wire, 
where it is transmitted to the end user that co encapsulates. Also, len specifies how 
many audio samples are in the buffer, so consumed can subtract the right amount from 
the user’s incoming voice buffer and send the right amount over the outgoing UDP 
socket.  This code is called for every channel attached to the conference (every end user).  
Thus, every end user receives the combined voice stream from this conference code.  
Because we only want the combined stream to reach the local user, we only call this line 
if this is the local user, which is always stored first in the list of channels.  

  for (l = m_chans.skipNull(); l; l = l->skipNext()) { 
 ConfChan* ch = static_cast<ConfChan*>(l->get()); 
 ConfConsumer* co = static_cast<ConfConsumer*>(ch->getConsumer()); 
 if (co) { 
  co->consumed(buf,len); 
 } 
  } 

Code Chunk 4.1 Routing Mixed Data to All End Users Attached to the Conference 
 
Thus we make the following change: 

    int i = 0; 

  for (l = m_chans.skipNull(); l; l = l->skipNext()) { 
 ConfChan* ch = static_cast<ConfChan*>(l->get()); 
 ConfConsumer* co = static_cast<ConfConsumer*>(ch->getConsumer()); 
 if (co) { 
  if (i==0) { 
   co->consumed(buf,len); 
  } 
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  else { 
   co->consumed(buf2, len, hostlen); 
  } 
 } 
 i++; 
  } 

Code Chunk 4.2 Modified YATE Routes Mixed Data to the Local User Only 
 
This section of code now transmits buf only to the local user.  Other users are passed 
buf2.  Before this section of code is run, we cache the local user’s voice data in buf2 in 
the same section as the mixing of all voice streams into buf.  hostlen contains the 
number of audio samples in buf2.  We also override the consumed function so that we 
can pass both len and hostlen; this way, the correct number of samples (len) is 
subtracted from the incoming buffer, and the correct number of samples (hostlen) is 
sent over the wire.  In the previous case, the two numbers were the same, which is why 
we had to override the consumed function in our modifications.      
 
This change, along with the overloaded consumed function, is all we need to make the 
YATE conference module route calls for the P2P design.  However, without changing 
how calls are connected, the conference code is not complete.  We need to modify the 
system to allow separate instances of YATE to connect and begin RTP sessions.  
Normally, several users all call in to the same instance of YATE.  We want users to 
connect with their local instance of YATE, which will automatically create outgoing 
connections to other YATE instances, according to the conference membership list.   

4.1.1.2 Connecting Calls 

In order to manage these incoming and outgoing connections, we take advantage of 
YATE’s external scripting interface.  This allows developers to write Python [10]  scripts 
using a library of functions that communicate with the YATE engine using its message 
passing system.  See Appendix for more details on this.  For our system, all call channels 
are connected to the conference module of YATE, because this module mixes audio data.  
The following code illustrates how an outgoing connection from a conference is created 
by the YATE script. 
 
yate.msg("call.execute", {"callto" : "dumb/", "target" :  

YATE_CONNECTION_TYPE + "/" + YATE_CONNECTION_CHANNEL + "@" + 
users[stringAddr],"caller" : "Roger", "callername" : "Roger" 
}).dispatch()  

 
yield yate.onwatch("call.answered") 
 
answered = getResult() 
  
yate.msg("chan.masquerade", {"message" : "call.execute",  
      "callto" : "conf/1", "id" : answered["id"]}).dispatch() 
Code Chunk 4.3 Adding an Outgoing Conference Connection 
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YATE conferences cannot create outgoing calls by themselves, so we start by initiating a 
call from a dumb channel.  The first yate.msg statement accomplishes this by passing a 
call.execute message to the telephony engine.  This message, which signals the 
creation of a call, is handled by the dumb channel, as designated by the “callto” 
parameter.  Other parameters designate the connection type (SIP), and the designated 
conference connection channel.   users contains a mapping of usernames to IP 
addresses; thus users[stringAddr] designates the IP address of a user stored in 
stringAddr.   
 
When the outgoing call is answered by the receiver’s conference module, we connect the 
dumb channel to the local YATE conference module, as shown in the second yate.msg 
statement.  The yield statement ensures that the flow of execution does not continue until 
the call is answered.  This completes the connection between the two instances of YATE.   
 
Once this connection is complete, we store the channel ID for the connection in a 
dictionary structure, indexed by username of the user at the other end of the connection 
(not shown).   This way, we can easily close connections by sending “call.drop” 
messages to the telephony engine, passing the appropriate channel ID as a parameter.   
 
It is important for the telephony engine to keep track of the group of users in the 
conference, because it will ultimately have to encrypt data.  However, we chose not to 
overload the “call.execute” message with this information.  That is, we could have 
modified the call.execute message handler in the conference modules by allowing it to 
receive the username as a parameter.  However, “call.execute” is used by many modules 
throughout the system for every type of call, so we decided not to make any changes 
here.  Instead, we added three new messages to the system: “yate.add”, “yate.remove”, 
and “yate.self.”  Additionally we wrote handlers for the messages which add/remove 
usernames from the encryption group or add the local user to a new encryption group.   
 
With these new messages, the script can send messages to add and remove users, as 
shown in this line of code: 
 
yate.msg("yate.add", {"callto" : "conf/1", "user" : member}).dispatch() 
 
Because the call connections are based on the conference membership, it is here that we 
create the communication interface between membership management and voice data.   

4.1.1.3 YATE Call Connection Interface 

To keep with our design goals, we require a complete and concise interface between the 
membership module and the call connection module.  It should expose all the 
functionality of the call connection script, while hiding its implementation.  It thus allows 
re-implementation of either module without affecting the other. 
 
The call connection module has the following capability.  It can create outgoing 
connections to users, remove outgoing connections to users, shutdown all outgoing 
connections, add members to an encryption group, remove members from an encryption 
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group, and create encryption groups.  It also receives IP address information about users 
in question.   
 
We thus define a simple communication protocol between the modules that allows the 
membership manager to issue one of seven commands as shown in Table 4.1.  The entire 
command and its parameters are combined into a single ASCII string terminated by a 
newline.  Each command is exactly four characters.  By fixing the length to four 
characters and making clear command delineation with the newline character, we 
simplify the parsing of commands and identifying errors. 
 

Command Parameters 
Join Username 
Leav Username 
Clos None 
Add- Username 
Rem- Username 
Bind Username + “TO” + IP addr 
Self Username 

Table 4.1 Call Connection Interface 
 
Commands are transmitted over a predefined local TCP port (6060) by the membership 
module. The call connection module acts as the server in the TCP connection, listening 
for the commands.   
 
The current implementation of this interface lives in the call connection script.  It sets up 
a socket listener, accepts an incoming connection and reads commands one at a time.  If 
there are errors, the script discards the command and waits on the next one, without 
passing feedback to the command issuer.  Code for this is shown in Code Chunk 4.4.   
 
data = conn.recv(1024, socket.MSG_PEEK) 
  if not data: 
                    break 
                else: 
                    delimiter_index = data.find("\n") 
                    data = conn.recv(delimiter_index + 1) 
           
                if (len(data) > 3): 
   command = data[0:4] 
   else: 
   command = "error" 

 
Code Chunk 4.4 Call Connection Command Receiver 
 
This section is followed by a series of IF statements, which appropriately dispatch 
execution based on the command.  A command of “error” does nothing.  Note that if the 
data received over conn is not properly formatted, delimiter_index will be -1, and 
thus 0 characters will be received.   
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4.1.1.4 Two-Tiered Design 

The design of chapter 3 specified that the implementation of the voice transmission 
module would be so flexible that it could be configured into a two-tiered hierarchy for 
improved performance deployment in disadvantaged networks.  While the details of this 
are spelled out clearly in the design section, the implementation did not come to fruition 
as of the writing of this thesis.   
 
This is the primary area for future work that we leave open.  YATE is flexible enough 
that implementation is feasible.  The required additions include a configuration parameter 
that allow nodes to function as aggregators and an algorithm that will allow deterministic 
aggregator selection within subnets.  After this, the aggregator functionality is needed, 
which is simply a different set of voice streams than P2P nodes use.   
 
Specifically, P2P nodes route two types of voice streams: the mixed stream, which is 
transmitted to the local user, and the locally produced stream, which is transmitted to all 
its peers.  The aggregator has a small difference.  It transmits the following streams: 

 
- The combined stream to its local user. 
- Its own stream mixed with the other aggregator to its subnet peers 
- The mix from itself and its subnet peers to the other aggregator. 

 
With these modifications, the implementation would be complete and versatility.  
However, this is left incomplete for now.   

4.1.2 Membership Management with Jabber and Pidgin  

Having defined a way to communicate with the call connection module, we can now 
implement a membership management module that communicates effectively along this 
interface.   
 
Design goals for the membership management module of our system are simple: maintain 
the set of users in the conference group and communicate changes in this information to 
the voice data module using the interface provided. The set of users includes the 
usernames and IP addresses of each conference participant. For a prototype 
implementation such as this one, it makes sense to piggy-back on existing software 
infrastructure that implements this functionality but can be modified to use the interface 
defined in the previous section.  

Jabber [6] is an open-source protocol for instant messaging and presence information 
exchange that is primarily used in text chat applications. Consequently, the protocol 
supports exchange of group membership information, which is used to manage group 
chat sessions. It is a client-server based technology in that end nodes communicate with a 
server rather than each other as they exchange information.  Communication between 
client and server can be configured to use Transport Layer Security (TLS) [27] for 
confidentiality.   
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Because Jabber is an open protocol, our system could use the protocol to implement its 
own server and client software. However, open source server software already exists, as 
does highly extensible client software. Thus, to reduce implementation time, we choose 
to use the open source Jabber client Pidgin to communicate membership information 
among the conference members. We implemented a Pidgin plug-in that will transmit this 
information to the YATE module. Pidgin’s intended use of the Jabber protocol is instant 
messaging.  

It is important to note that including a client-server membership module does not 
compromise the design goals of the system, which call for end-to-end encryption and 
peer-to-peer voice data routing. This module deals only with membership information, 
which abides by relaxed goals for confidentiality; thus, such information can be 
transmitted through a server which is not part of the trusted group.  By using Jabber’s 
TLS capabilities, the information remains confidential to an expanded group, including 
the conference membership and the server. 

In a system with strict end-to-end confidentiality requirements for membership, the 
designer could implement a module that transfers this information directly between peers. 
Providing this flexibility is the reason why modules are decoupled from one another.  

4.1.2.1 Membership Information Exchange with Jabber Protocol  

Conveniently, the Jabber protocol provides support for conference membership 
management. Jabber clients can send join or leave messages to conferences hosted by 
Jabber servers. The server maintains this information, and distributes any changes to 
clients that have joined the group. The clients can receive changes in presence 
information for the conference group [46].  

The only additional functionality needed is communication between the client side 
software, and the voice data module. Obviously, this functionality is not pre-loaded in 
Pidgin, so our system includes a plug-in that implements it.  

4.1.2.2 Implementation of the Pidgin Plug-in  

Pidgin is highly extensible in that it allows developers to code C plug-ins spanning a 
wide range of uses by using its callback system. Loaded plug-ins have the ability to 
register callbacks with the Pidgin system that are triggered whenever a specific event 
occurs. The triggering of a plug-in results in a function call. Possible callbacks include 
such instant message and chat session related events as: sending-im-msg, 
received-chat-msg, and conversation-created. A complete list can be 
found at http://developer.pidgin.im.  

For membership management, the only relevant events occur when a user joins or leaves 
the conference. We use Pidgin’s group chat sessions as conference membership lists. In 
order to join or leave the group for the voice conference, users must join or leave a pre-
designated group chat. The plug-in acts on these events using callbacks, and notifies 
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YATE of the changes.  

It must also notify YATE of the IP address of the users involved, so that YATE can 
create the data connections. For this purpose we overload the group chat message sending 
functionality. Because each end user is unaware of the location of the other end-users (as 
this is a client/server system), users must overtly inform other users of their locations. 
The plug-in accomplishes this by sending a string containing its local IP address as a 
group chat instant message. Code to determine the local IP address is shown in Code 
Chunk 4.5.  This code is for windows version, and uses functions gethostname and 
gethostbyname from the winsock library.   

int find_local_ip(char * ip) 
{ 
    char ac[MAXHOSTNAMELEN]; 
 if (gethostname(ac, sizeof(ac)) == SOCKET_ERROR) { 
        return 1; 
    } 
 
    struct hostent *phe = gethostbyname(ac); 
    if (phe == 0) { 
        return 1; 
    } 
  
    int i = 0; 
    while (phe->h_addr_list[i] != 0){ 
        struct in_addr addr; 
        memcpy(&addr, phe->h_addr_list[i], sizeof(struct in_addr)); 
        sprintf(ip, inet_ntoa(addr)); 
  
 i++; 
    } 
     
    return 0;  
} 

Code Chunk 4.5 Code for Finding Local IP Address 
 
The string ultimately sent to the group contains tags that earmark it as an IP address. The 
plug-in must appropriately handle such earmarked messages from other users by storing 
the IP address and preventing the message from being displayed.  If someone joins the 
conference without running the plug-in, her/his chat window will display plaintext 
messages containing the other members’ IP address information.  We consider this a 
harmless side effect for this prototype.  In this way we distribute the appropriate 
information, while making the system relatively robust.  However, a more graceful 
solution exists, devised by Joe Cooley at Lincoln Lab2. 

                                                 
2 IP address information could be distributed in the id attribute of a Jabber span tag, in which the actual 
message enclosed by the tags is “VoIP Info.”  The plug-in could handle such messages by extracting the 
relevant information and concealing the message from the user’s conversation window.  Users without the 
plug-in will only print “VoIP Info” instead of all the information.     

 52



Furthermore, it is logical to authenticate IP address information in a future system.  Even 
if membership information is not considered confidential, the IP addresses used are 
important for keeping the voice data confidential.  Thus, users should only accept IP to 
username bindings from trusted users.  Otherwise, users could be tricked into transmitting 
voice data to the wrong source.  A system under development at Lincoln Lab, as part of 
the same overall project, allows authenticated IP address dissemination.  The extensibility 
of our prototype and simplicity of component interfaces will allow this system to be 
integrated easily upon its completion.     

With this in mind, we are interested in 5 specific callbacks: chat-buddy-joined, 
chat-buddy-left, chat-joined, chat-left, and receiving-chat-
msg. Using the protocol defined in the interface for call connection module, the basic 
algorithms for each call back are as follows:  

receiving-chat-msg  
if msg marked as IP address of sender  

           if message is new  
               send Bind sender To IP address to YATE  
               send Join sender to YATE  

Do not display in chat session window  
Else display in chat session window  

 
chat-joined  

send YATE: Self username msg  
send to group chat: tagged IP address  

         for each username in group  
             send Add username to YATE encryption group  
 
chat-buddy-joined  

send to YATE: Add username to YATE encryption group  
 
chat-buddy-left  

send Rem- username to YATE encryption group  
send Leav username to YATE  

 
chat-left 

send Clos to YATE  
Code Chunk 4.6 Pidgin Callback Pseudocode 
 
The pseudocode is not much different than the actual code.  Code Chunk 4.7 shows the 
chat-buddy-left callback implemented. 

static void chat_buddy_left(PurpleConversation *conv, const char * 
name, const char *reason, int sock) { 
  char buf[strlen(LEAVE_MSG)+strlen(name)+1]; 
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  char buddy_left_msg[strlen(REMOVE_MSG)+strlen(name)+1]; 
   
  sprintf(buf, "%s%s%s", LEAVE_MSG, name, "\n"); 
  sprintf(buddy_left_msg, "%s%s%s", REMOVE_MSG, name, "\n"); 
 
  send(sock, buf , strlen(buf), 0);  
  send(sock, buddy_left_msg, strlen(buddy_left_msg), 0); 
} 

Code Chunk 4.7 Implementation of Chat-Buddy-Left Callback 
 
Note that when a user joins a group chat, she/he receives from the server the entire 
transcript thus far of the group chat, assuming the chat history option is enabled.  Thus, 
the receiving-chat-msg callback is triggered once for each message that has been sent to 
the group. Consequently, the function call for this trigger exits without communicating 
anything to YATE when the message in question is old, i.e. from the conference history. 
Otherwise, each time a user joins, everyone in the conference would attempt to create a 
connection with her/him, while she/he would create a separate connection with each other 
user. Because connections are two-way automatically, an extra connection creates a 
redundancy which will overload the system and create loopback effects. We solve this 
problem by only allowing existing users to connect to new users.  The user that creates 
the connection also maintains it and is responsible for tearing it down when one of the 
parties leave.   

Even though only one user maintains a given connection, all users must maintain an 
accurate list of current group members. Thus, when a user joins, the Pidgin plug-in tells 
YATE to add all of the group’s usernames to the list. Whenever new users come or go, 
the plug-in updates YATE.  

As far as voice connections are concerned, Pidgin tells YATE to create a new connection 
when a user joins, and remove the connection when the user leaves. It is also important 
that an exiting user tells YATE to close all of its connections. This is because the YATE 
script only manages the connections that is has created itself. Thus, if user A joins before 
user B, user A will create the outgoing connection to user B. If user A also leaves before 
user B, Pidgin on user B will tell YATE to remove the connection, but YATE will be 
unable because it did not create the connection. Thus, user A must tear down all 
connections it has created.  

Theoretically, a malicious user could continue to maintain its connections after it has left 
the conference in an attempt to eavesdrop without others knowing. This is why other 
conference participants also send a remove message to YATE, telling it to remove the 
user from the encryption group when she/he leaves. Thus, the subversive user will 
receive encrypted voice data, for which she/he does not have the decryption key. 
Consider the following exchange, in which Mallory tries to eavesdrop on a sensitive 
conversation between Alice and Bob.   

Alice Connects to Mallory 
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Alice: Hello, Mallory 
Mallory: Do you have any insider stock tips for me? 
Alice: You know I can’t give you that 
 
Bob joins conference group in pidgin 
Alice Connects to Bob 
Mallory Connects to Bob 
New Key issued for new group 
 
Mallory: Hi Bob, planning any major acquisitions? 
Bob: I can’t disclose that information in front of you Mal, maybe 
you should go. 
Mallory: Ok, bye 
 
Mallory leaves pidgin conference group, secretly maintains voice 
connection to Bob 
New Key issued for new group 
 
Bob: Ok let’s talk about secret wall street stuff. 
Alice: Ok good, Mallory can’t understand us even though he’s still 
listening, because we switched keys! 
 
Mallory is foiled 

 
As this conversation goes, the encryption module protects against eavesdroppers.  Now 
all we have to do is implement it.   

4.1.3 Security with PKGE  

Now that we’ve got the vital links set up in our system, we proceed to adding what we 
came here for:  the encryption.  Carrying over from the design section, we have elected to 
use the Public Key Group Encryption (PKGE) libraries from Lincoln Lab.  For our 
purposes, there are only a few PKGE functions and data types that are relevant.   

pkge_seal encrypts and signs a data buffer and includes any necessary headers that the 
protocol calls for.  pkge_unseal does the opposite, decrypting and signing a buffer 
that has been sealed.  We also deal with group_t objects, which contain lists of 
usernames, that are passed to the seal and unseal functions so that they use appropriate 
keys.  pkge_group_add and pkge_group_remove modify the group objects.   

Logically, the seal call must take place after any lossy audio compression, otherwise, the 
sealed message would be corrupted and unrecoverable.  Similarly, it is easier to place the 
seal call before any RTP headers are added to the data buffer, so that these headers are 
recoverable by the lower level RTP receivers on the other end.  Naturally then, we choose 
to seal outgoing messages in the RTP channel module just before the RTP headers are 
added.   
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if (!m_wrap->rtp()->local() && DataConsumer::m_have_yate_group) { 
  if (DataConsumer::s_use_previous_packet) { 

 
m_wrap->rtp()->rtpSendData(false,tStamp,(char *)        
                           DataConsumer::s_previous_block.data,   
                           DataConsumer::s_previous_block.len);  

  } 
 
  else { 
 data_t original_msg; 
      data_t sealed_data; 
      original_msg.data = (byte_t*) data.data(); 
      original_msg.len = sz; 
      sealed_data = data_copy(original_msg); 
      int r = pkge_seal(DataConsumer::m_yate_group, &sealed_data); 
 DataConsumer::s_previous_block = data_copy(sealed_data); 
      m_wrap->rtp()->rtpSendData(false,tStamp,(char *)       
                                 sealed_data.data,sealed_data.len); 
      free_data(&sealed_data); 
  } 
} 

Code Chunk 4.8 Sealing Outgoing Audio 
 
In Code Chunk 4.4, the else statement contains code to copy over data into a data 
structure supported by PKGE.  This aptly named parameter, sealed_data, is passed to 
pkge_seal before being sent over the wire, then freed.  Note also, that this case is only 
accessed when m_wrap->rtp()->local() is false.  This is simply an indicator we added 
that returns true when we are working with the local end user (to whom we send plaintext 
data).  

Furthermore, there are references to DataConsumer static s_previous_block and 
s_use_previous_block variables.  s_use_previous_block indicates 
whether or not the necessary sealed, packetized data has already been computed, and if it 
has, s_previous_block maintain the data itself.  Such a situation occurs when there 
are 3 or more confernece participants and this code segment is executed three times.  The 
data produced by the local endpoint should be passed to the other two end users in 
identical form.  Thus, this data is saved in s_previous_block after it is computed for 
the first time, and its presence is flagged in s_use_previous_block.  We set the 
values for the flag in the conference module when the data is being computed, and free 
the data when the flag changes from true to false.  The point of these variables is to take 
advantage of the fact that messages sent to different parties in the conference use the 
same keys.  This efficiency is one of the reasons we adopted the design in section 3.    

Assignment and updating these variables would have been in Code Chunk 4.2, which 
precedes the seal calls in the execution stack.  However, we omit these few lines of code 
due to lack of relevance in that section.   

Note also the reference to m_yate_group.  For our system, we require a group object 
that is referenced whenever data is encrypted.  It is this group_t object that is modified 
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as the telephony engine receives add and remove user messages from the script described 
in section 4.1.1.2.  The group is created when the control script passes a yate.self message 
to the engine.  The following code in Code Chunk 4.3 is run.  The s_pin variable stores 
the users pin number, and is accessed in a configuration file.  The yate.self message is 
passed with the local username as a parameter, self, which is used to create 
m_yate_group, after any old data is freed.  The PKGE protocol that is used is 
specified in the call to pkge_init.   

void ConfRoom::addSelf(String &self) { 
 pin_t * pin = new pin_t; 
 pin->data = (byte_t *) strdup(s_pin.c_str()); 
 pin->len = strlen(s_pin.c_str()); 
 user_t* user = new user_t; 
 
      if (DataConsumer::m_have_yate_group)        
          pkge_group_free(DataConsumer::m_yate_group); 
  
 pkge_user_load(&DataConsumer::m_yate_self, s_system.c_str(),        
                     self.c_str(), pin); 
  
 pkge_init(s_system.c_str(), PKGE_PROTOCOL_LEAN); 
  
 DataConsumer::m_yate_group =   
                    pkge_group_new(DataConsumer::m_yate_self); 
 DataConsumer::m_have_yate_group = true; 
 
 delete pin; 
} 

Code Chunk 4.9 Creating an Encryption Group 
 
The code for adding and removing members is omitted due to its simplicity and similarity 
to Code Chunk 4.9   

Based on the position of the seal calls, unseal calls must be placed as soon as the RTP 
headers are stripped from incoming data.  As always, this does not apply to the local user.  
As Code Chunk 4.10 shows, the manner of unsealing the data is similar to the mannner of 
sealing the data.     

if (!m_local && DataConsumer::m_have_yate_group) { 
      DataBlock unsealed_block; 
      data_t sealed_data; 
      sealed_data.data = (byte_t *) data; 
      sealed_data.len = len; 
      data_t unsealed_data = data_copy(sealed_data); 
 
      s_cert_Mutex.lock(-1); 
 
 group_t decrypt_group =   
              pkge_group_new(DataConsumer::m_yate_self); 
 
      int r = pkge_unseal(decrypt_group, &unsealed_data); 
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 pkge_group_free(decrypt_group); 
 
 s_cert_Mutex.unlock(); 
 

unsealed_block.assign((void*)   
unsealed_data.data,unsealed_data.len, false); 

 source->Forward(unsealed_block, timestamp); 
      unsealed_block.clear(false); 
    } 
else source->Forward(block,timestamp); 

Code Chunk 4.10 Code to Unseal Incoming Data 
 
An important subteley to notice is the use of s_cert_Mutex.  This static variable 
refers to a mutex which serializes decryption calls.  YATE launches a new thread 
whenever a packet is received on the RTP port.  Consequently, it is possible for multiple 
concurrent threads to run the decryption Code Chunk 4.10.  The mutex ensures that 
PKGE methods are not invoked by separate threads at the same time.  Because PKGE 
does not protect data for multithreading, multiple calls to the same PKGE method can 
cause unexpected behavior.  Appropriate data protection is a notable feature for 
consideration in the next generation system.   

Similarly, the decryption group decrypt_group should not be accessed by two 
threads at the same time, otherwise one will see garbage data.  Thus, we statically store 
only the username needed to define the group (which for decryption is a single group 
member, not the entire group) and create a new group every time the code is invoked.  
We free the group, unlock the mutex, and forward the freshly decrypted data on its merry 
way.   

4.1.4 Audio Playback with X-Lite  

The role of the audio playback software is to establish a connection with the voice data 
module and playback audio to the end user. The physical analog of the playback module 
is a telephone. Because this module is not directly related to the most important design 
goals of the system (encryption, peer-to-peer audio transmission, etc), this module should 
be chosen first based on how well it integrates with the modules that do achieve these 
goals and second based on how usable it is.  

Specifically, the audio playback module must communicate with the voice data module 
effectively. YATE is chosen as the voice data module for the above reasons. YATE can 
initiate conversations with a soft-phone using any open call protocol including SIP and 
H.323, and can transmit the voice data using RTP. Thus the playback software must have 
support for these protocols. It must also run on the required platforms: Windows, Mac 
OS, and Linux.  

We use X-Lite 0, a freeware soft-phone product for Windows, Linux, and Mac OS that 
provides robust, reliable SIP calling and RTP conversations. It plays back audio 
transmitted in a variety of formats, including the mu-law compressed data that is 
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delivered by YATE.  

Because there are many free soft-phones capable of meeting these preliminary 
requirements, usability was also an important selection consideration.  In fact, the 
obvious choice for this function would have been YATE’s own client, but a cursory 
examination found its usability to be lacking.  As the market's leading free SIP based 
soft-phone 0, X-Lite’s popularity among consumers suggests its ease of use. More 
concretely, it can be quickly downloaded, configured and installed in 5 steps that do not 
take more than 5 minutes on modern machine with a broadband connection (see 
Appendix C). It takes exactly two clicks for a properly configured version of X-Lite to 
interface properly with the YATE call handling module. On a more subjective note, it has 
an aesthetically pleasing UI (see Figure 4.3). 

 

Figure 4.3 X-Lite User Interface 
 
Moreover, the minimum system requirements for X-Lite are 256 Mb of main memory on 
a Pentium III with clock speed of 700 MHz. This is years behind the current upper bound 
on computational power and suggests that X-Lite will not hog machine resources that are 
needed by the more laborious processes of the system.  

Several other soft-phones were considered, but were rejected for reasons including 
platform dependence and configuration difficulty. Such phones included KPhone, which 
only runs on Linux and Cisco IP Communicator, which doesn’t support open protocols 
such as SIP. It is important to note that the list of soft-phone clients is long and growing, 
making it difficult or impossible to evaluate all of them. It is likely that there are other 
phone clients that would have been as effective as or more effective than X-Lite at 
meeting our goals. However, X-Lite met requirements better than anything else 
examined.  
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4.2 Summary  

In this section, we have reviewed the low level details of our secure conference 
implementation.  All three major modules (voice, membership, security) were completed.  
The only exception is the omission of the two-tiered design for voice transmission.  
Otherwise, the voice module handles call connection and voice transmission in a peer-to-
peer fashion, as well as audio playback and compression from off the shelf components.  
Membership management was implemented with a Pidgin plug-in that uses the existing 
Jabber protocol infrastructure.  Of course, we make use of PKGE for security, as it 
achieves the design goals and demonstrates its usability in a real-time communication 
system.   
 
In the next section, we will examine exactly how well the design goals are met.  Where 
possible, quantitative evaluation is employed.   
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5 Evaluation & Testing 

Now that development of the system is complete, we proceed to create a testing 
framework.  We will use this to evaluate the system against design goals set in section 3.  
The points of examination are functionality, security, quality, and usability.   
 
Evaluation and tests will show that most major goals for functionality, security, call 
quality, and usability have been achieved.  The overhead added by PKGE is small for 
packet latency, indicating that the system’s ability to meet quality standards is largely 
dependent on the network of deployment.  Similarly, byte overhead does not contribute 
significantly to packet loss.  However, system functionality lacks implementation of a 
versatile two tier design, while usability lacks simple installation and startup.  Design 
goals that are not achieved are left for future work.   

5.1 Functionality  

The functional requirements for the system included creating conference calls that could 
support multiple speakers, occasional membership changes, consistent availability, and at 
least six participants.  In short, each of these has been achieved.  
 

√ The design is such that each endpoint transmits its voice data to each other 
endpoint, which mixes all data into a single stream. This is fully implemented.  
This distinguishes our system as a single conference, rather than multiple 
phone calls.  In the two-tiered model design, aggregators perform some of this 
mixing.   

 
√ Membership management with Pidgin and Jabber allows membership changes 

to be disseminated to each endpoint so that users can join and leave the 
conference.  As membership changes, all users are kept up to date on the 
conference group so that the appropriate encryption keys are used.    

 
√ Because each of the endpoints is self-sufficient, conferences do not depend on 

any one user for persistence.  If the membership server goes down, join and 
leave functionality is lost, but the current members can continue conversing.   

 
√ Ability to maintain six participants depends on the links used for voice 

transmission.  However, chapter 5.3 provides evidence that the system scales 
well with additional users.  Conferences of six are possible if the network has 
enough bandwidth, as prescribed in 5.3.   

 
The one functional requirement omitted from implementation is the two-tiered model for 
deployment in disadvantaged networks.  We have, however, designed the solution in 
chapter three, and specified how exactly it should be implemented.   
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5.2 End-to-End Security  

In this section we evaluate the security design goals. Specifically, we sought to provide 
confidentiality, authentication and integrity end-to-end.  The security is dependent on the 
security strength of PKGE, while the achieving it from end-to-end depends on the 
implementation.  The peer-to-peer model and two-tiered model are both end-to-end 
secure.  
 
Confidentiality of messages during voice conferences depends on the algorithm used for 
encryption and the method of distributing keys.  In short, AES in CBC mode with 256 bit 
keys is used, which is the standard for symmetric encryption adopted by the U.S. 
Government and the National Institute of Standards and Technology (NIST).  These keys 
are unique for each set of participants, providing forward/backward secrecy for the 
conference.  Perfect forward secrecy results from reissuing keys for each epoch.  
However, these communications are only really secret if the key distribution is secure.  
The key distribution is done using BGW Broadcast Encryption.  Thus, the secrecy of 
messages reduces to the strength of the BGW scheme.   
 
Authentication and integrity verification are also required by design, and achieved by 
PKGE.  For the Lean protocol, this is achieved through a keyed SHA1 hash, or an 
HMAC.  Authentication is thus dependent on the strength of the SHA1 hash, developed 
by the National Security Agency (NSA) and considered a standard by the NIST.  Other 
protocols, as well as key distribution, use an elliptic curve digital signature algorithm 
(ECDSA).   
 
As for ensuring that the security is implemented from end-to-end, we can conclude that 
this is the case in the peer-to-peer model.  The P2P model was designed specifically for 
end-to-end security.  The model invokes seal immediately after voice production and 
compression, before transmission.  Unseal is called right before decompression at the end 
of the wire. 
 
In the two-tiered model, performance necessities force us to unseal the messages at the 
aggregator nodes when there are multiple concurrent speakers.  However, the aggregators 
that unseal and reseal the messages in the middle of transmission are trusted conference 
participants, thus part of the trust model.  Thus, this does not constitute a departure from 
end-to-end security.   
 
Thus the system meets the security goals of 2.2.2. 

5.3 Call Quality 

This section details a number of rigorous tests to determine the call quality on the test-
bed, and extrapolate the call quality in several disadvantaged networks.  Using the fastest, 
leanest protocol, total quality performance can be achieved in Ethernet connected subnets 
and across TCDL links.  Tolerable quality is achieved with Inmarsat and Connexion 
satellite links, while Iridium satellite links cannot achieve any reasonable quality.   
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Recall the standards for call quality we set are based on packet loss and packet delay, 
both measured from end-to-end.  We choose to evaluate quality based on those simple 
two factors outline in 2.2.3.  Specifically, total quality is considered less than 100 ms of 
end-to-end delay with 0% packet loss, while tolerable quality is up to 400 ms of delay 
with up to 1% packet loss. 

5.3.1 Call parameters  

I will calculate packet loss and packet delay to determine call quality while varying 
several factors to determine the scope of appropriate use for the system.  The parameters 
to vary are: 
 

1 Size of Conference – As more users join the conference, we expect the 
degradation in call quality to be minimal while there is adequate bandwidth.  
Based on the PKGE protocols, adding additional users does not significantly 
increase computational overhead.  Because messages are transmitted to each 
individual user, required bandwidth increases linearly with each additional 
participant.   

 
2 Packet Size – YATE packetizes audio data into 160 byte chunks by default.  

We will compare results for 80 byte packets as well to determine if packet size 
has any effect.  The difference in computation overhead should be negligible 
for all protocols except Lean, because the bottleneck operations in PKGE run 
in constant time with respect to message size, except during keying.  
Specifically, the ECDSA is performed on a constant size message hash.  
When the HMAC is used instead of the ECDSA, the operation runs in linear 
time. 

 
3 PKGE Protocol – It should be clear that the Lean protocol will have the 

lowest time cost and smallest packet size.  However, for the sake of 
comparison we include some measurements from the other protocols as well.  
The increased latency in the other protocols pays off in unreliable data 
networks because neither the Stateless protocol nor Sessions protocol requires 
guaranteed packet delivery.  Thus it is important to experiment with them and 
determine their usability.   Nevertheless, we expect the Lean protocol to be 
significantly faster due the decrease in packet size overhead, and the 
difference in computation time between a message authentication code and a 
digital signature.  Moreover, we expect Stateless to be the slowest due to 
larger packet sizes, and increased computation for each packet, as keys are 
computed every single time.    

 
4 Membership Changes – While members are joining and leaving, we expect 

significant degradation in quality both from packet loss and latency.  
Increased latency will occur as new keys are computed and distributed.  
Packet loss will increase because packets distributed at this time will have 
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higher latency (may be dropped by buffer) and larger size.  Also, in order for 
packets to be properly signed, encrypted, and decrypted, the conference 
membership changes must be synchronized at different endpoints.  For 
example, when a new user joins, if the current speaker transmits voice data 
but has not yet updated the group membership variable, the new user will have 
to drop the packet.  As this is unlikely, a few packets will probably be 
dropped.     

 

5.3.2 Network Parameters 

Tests were carried out on the Lincoln Lab “netlab” test-bed consisting of 36 Intel Xeon 
2.4GHz quad core 2GB machines running Debian Linux.   The computers are connected 
with a 100 Mbit/s Ethernet.  Four of the machines are used for the tests. 
 

5.3.3 Methodology 

To measure packet latencies, we calculate two quantities.  First, we calculate the time 
between audio production and audio transmission.  This includes all computation on the 
speaker side of a conversation, notably sealing the message.  Everything else the VoIP 
software does, such as audio compression is also included.  Secondly, we measure the 
latency on the other side of the wire.  That is, the time elapsed between packet receipt and 
audio playback.  This includes unsealing the data3. 
 
I chose to measure these quantities instead of directly measuring end-to-end latency 
because end-to-end latency depends heavily on the network on which the system is 
deployed.  By measuring the latency on the speaker side and on the receiver side, we can 
determine the network requirements for the various levels of call quality.   
 
I took measurements by inserting calls to the system clock directly in the YATE code.  
We invoked the now() method of the YATE time library, which is equivalent to calling 
gettimeofday() on a Linux machine.  This returns the time in microseconds, 
although the precision is on the order of 10 microseconds.   
 
Packet loss is measured in a similar fashion.  Because the network test-bed used was 
connected with at 100 Mbits/s Ethernet, the rate of packet loss on the network was 
negligible.  Thus, we could measure end-to-end and know that any loss was based on the 
system, and not the network.  The same backwards computation for acceptable networks 
can then be applied.  Specifically, we insert a counter at both the sending and receiving 
points in the YATE code.  This way, during a test call, every party counts every packet 
sent out, and every party counts every packet played back.  The difference between the 
two is the packet loss.   For example, see Code Chunk 5.1, which shows how simple it is 

                                                 
3 The version tested included a bug in the PKGE code that caused additional computational latency, which 
averaged 5201 μs.  In order to avoid repeating the extensive testing, the numbers reported in this section 
were calculated by subtracting this additional latency from the actual time measured.   
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to count received packets.  The counter is placed after the unseal call.  This is the last 
point the packet passes through at which it is reasonable for the packet to be dropped. 
 
int r = pkge_unseal(decrypt_group, &unsealed_data); 
if (!r) read_counter+=1; 
 
source->Forward(unsealed_data, timestamp); 
Code Chunk 5.1 Inserting Packet Counter in Receiver 
 
Using this test-ready code, we carried out a number of experiments to examine the 
quantities mentioned in the previous section.  Let’s see which predictions held up on the 
test-bed.   

5.3.4 The Verdict 

The following tests show very promising results for PKGE, as we learn that the Lean 
protocol adds very little latency to the VoIP system and adds very little byte overhead.  
The entire send side latency is on the order of 100 microseconds, and 66 bytes of 
overhead is added with Lean PGKE.   

5.3.4.1 Protocol Latency Comparison  

Because of the performance superiority of the Lean protocol, it is used for most of the 
tests.  However, as a quick sanity check, we compare the sender side latency in a two-
party conversation using 160 byte packets.  Figure 5.1 shows the latency for the first 15 
messages in the conversation for each of three protocols: Stateless, Sessions 
(Pessimistic), and Lean.  Without any mathematical analysis, it is clear that Lean blows 
the competition out of the water, having negligible seal latency after the first message. 
 
The nature of the protocols is such that we expect the first message in the Lean protocol 
to be as costly as the messages in the Stateless protocol, the message requires key 
generation and includes all headers.  Similarly, the Sessions protocol will behave the 
same as Stateless until the key is verified, which occurs after three messages in this case.  
Otherwise, Lean is the fastest protocol.   

5.3.4.2 Marginal Participant Latency 

With that out of the way, let’s examine something more interesting: the effect of 
additional parties in the conference call.  Because the system is for conferencing, 
scalability to more than two partiers is essential.  Scalability to larger groups augments 
the scope of applications, making the system more practical.   
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Figure 5.1 PKGE Protocol Comparison 
 
I test this property by comparing sender side latency as the conference grows from two to 
four members and extrapolating to even larger groups.  We use the Lean protocol with 
160 byte messages.  Recall from the implementation that the speaker only calls seal 
once, regardless of the number of users in the conference.  The same sealed data can be 
transmitted to each conference user because we use group encryption.  Thus, we expect 
the additional latency to be low; the computation necessary involves moving some data 
around the YATE system and back out onto the wire.   
 
Figure 5.2 shows the time elapsed between audio production and transmission for each of 
the three recipients in a four party call.   Note that each line does not represent additional 
latency, it represents total latency.  As an example, for the 15th message, audio is 
produced at time = 0, data is transmitted to the first recipient at time = 165 μs, and data is 
transmitted to the third recipient at time = 367 μs .  The average additional latency for the 
second recipient is 96 microseconds, and the average additional latency for the third 
recipient is 91 microseconds.  On this basis alone, the conference is highly scalable, 
confirming the predictions.  Of course, we will also look at packet sizes and network 
requirements later on.    
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Latency Comparison for Multiple Voice Streams
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Figure 5.2 Latency for Multiple Voice Streams 

5.3.4.3 Receive Side Latency  

So far I’ve only shown results for send-side latency.  We do this on the assumption that 
the receive-side latency is about the same, because the operations are relatively 
symmetric.  That is, on the send side, the bottleneck is the seal and the only other 
significant operation is the compression.  On the receive side, the bottleneck is unseal, 
and the significant operations are decompression and audio mixing.  Audio mixing is 
uncommon, so its effect is small and less important than other processes.  Before jumping 
to any wild conclusions, we test the receiver side latency for the Lean protocol, with 160 
byte messages.  Figure 5.3 shows that receiver side time varies from about 40 μs to 180 
μs for the 15 messages measured.  This is close enough to the send side latencies of 20-
280 μs that we can assume that they will be similar in future cases.   This graph leaves 
out the initial message in a conversation, which carries an encapsulation of a group key to 
the new group; this message is larger and takes longer to transmit than subsequent 
messages.     

5.3.4.4 Join Message Latency 

The initial messages in the conversation, as well as messages that coincide with the 
joining of a new group member will necessarily be much larger and slower for the Lean 
protocol.  In fact, they should be equivalent to the messages sent during the course of a 
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Stateless protocol conversation.  This is because the first message after a new group 
member joins must contain the headers necessary for re-calculation of the group 
encryption key.  When the message is sealed, the sender spends time calculating that key 
and the headers. Thus, we expect ‘join’ messages to have a latency in the 30 ms range, as 
the Stateless protocol does in Figure 5.1.  The receiver of the join message also endures 
additional latency by computing the computing the decryption key from the headers and 
verifying authenticity and integrity.  This process is roughly equivalent in time used, and 
requires 30-40 ms.      
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Figure 5.3 Receive-Side Latency 
 
Figure 5.4 shows the latencies during a Lean protocol conversation using 160-byte 
messages.  Messages 1, 16, and 31 are ‘join’ messages.  This conversation data 
corroborates the predictions, as the ‘join’ messages take about 30 ms to compute before 
sending.  Note also that the ‘join’ messages appear to be slower with each additional 
party, starting at 31.1 ms and going to 32.8 ms for the last one.  This trend is reasonable 
because each additional party increases the computation cost for the headers that are 
transmitted with the message.   

5.3.4.5 Concurrent Speech Cost 

Thus far, we have only tested the common communication case in which only a single 
user is speaking at a time.  It is rare that there are multiple concurrent speakers, because 
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this makes conversation difficult.  However, it is conceivable that certain scenarios (such 
as a debate) will involve numerous users trying to squeeze in their two cents all at the 
same time.  To determine how this affects packet latencies, we tested a three person 
conference, using the Stateless protocol in which all three endpoints continuously 
transmitted audio data to one another.  The results are shown in 5.5.   
 
Interestingly enough, the send side latency appears to triple compared to the single 
speaker model in 5.1.  This is surprising at first, because having extra speakers should not 
affect the encryption at all.  However, some debugging revealed that the audio-sending 
thread is interleaved with the audio-receiving thread.  Because there are three 
uninterrupted speakers, each user receives two packets for every packet it sends.  
Consequently, the audio-receiving thread, which is about as costly as the transmission 
thread, is launched twice while the transmitting thread is running.  This causes the 
slowdowns.  Note also that there are a few data points that are significantly faster (by 30 
ms).  These occur when only a single packet is received during the run of the transmitting 
thread.  This is possible because the different speakers are not perfectly synchronized and 
the network does not necessarily deliver every packet with the same speed.  In other 
words, there is some random variation between the different users.   
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Figure 5.4 Send-Side Latency with Join Messages 
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5.3.4.6 Effect of Message Size on Latency 

There is one more comparison dimension left: message size.  For the Lean protocol, 
messages during the conversation are encrypted using AES in CBC mode.  The 
authentication algorithm in this protocol is a keyed SHA1 hash.  Both of these algorithms 
are lightning quick, and should take a few microseconds to compute (see 3.2.1).  The 
time complexity of both algorithms is linear, but computation time is on the order of 
microseconds, so we expect only small differences in the send latency tests.  This is 
confirmed in Figure 5.6, which shows the comparison in computation time for 80 byte 
messages and 160 byte messages.  160 is consistently slower by about 50 microseconds, 
most likely because of the slight slow down from the two linear time algorithms.   
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Figure 5.5 Effect of Concurrent Speakers 
 
Along the same dimension as message size, we also look at the actual size of the sealed 
message when it is sent out onto the wire.  This is important for networks that have 
stricter bandwidth constraints than our test-bed.  Table 5.1 details this information, 
showing the size of messages transmitted for each protocol, for both original message 
sizes, and for both ‘join’ messages and ‘during’ messages.  
 
Not surprisingly, the Lean protocol is the leanest.  The authenticating HMAC is smaller 
than the digital signature used in all the other protocols.  Actually, the protocol uses only 
four bytes of the HMAC, while the digital signature adds about 60 bytes.  The Stateless 
protocol comes in a solid last place for the during conversation messages, as it includes 
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key calculation headers every time.  However, because the Stateless protocol does not 
need to include add supplemental session-related information, it saves a about 40 bytes 
over the other three protocols when they send out ‘join’ messages.  Concretely, state 
information coupled with the long digital signatures cause Sessions and Optimistic 
protocol ‘join’ messages to be the longest overall.  Similarly, even though Lean ‘join’ 
messages save about 55 bytes by using HMACs for authentication, they are only about 20 
bytes shorter than Stateless ‘joins’ because of the state information included.   
 
This message size information will prove useful in calculating the necessary bandwidth in 
various usage cases.   
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Figure 5.6 Computation Latency for Different Message Sizes 

5.3.4.7 Packet Loss  

Our last set of tests for comparison deals with packet loss from end-to-end.  Packet loss 
comes from a variety of sources, including transmission errors, network congestion, 
buffer overruns, and encryption errors.  Based on the impressive parameters of the 
network used, we do not expect any packet drop or bit errors in transmission.  The packet 
loss tests confirm this, showing 0% packet loss during the course of a conference call.   
 
What we do see, however, is that when a user joins a conference, the first few packets 
received are not decipherable.  This is because the membership management module and 
voice transmission module are not completely synchronized.  This causes the speaker to 
create a connection with the new user and transmit data before the new user’s username 
is added to the group variable.  Thus, the audio that the new user receives is not 
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encrypted such that she/he can decipher it.  We can consider this as packet loss, or we can 
simply define the ‘join’ to occur once the new user is added to the group.   
 
Existing users in the conference, when a new user joins, do not miss a beat.  The 
increased latency exists (as shown in Figure 5.4) from the added seal cost, however, no 
packets are lost.  Packets are not dropped on the network, nor are there unseal errors, 
because the existing users are already part of the group.   
 
These tests show a number of important points that we will use to make 
recommendations for the system’s use.  First, the tests confirm the fastest protocol and 
the most reliable protocol are Lean and Stateless, respectively.  The tests indicate what 
the latency costs are on the send side and receive side during conversation and during 
membership changes.  This, along with packet size tests, allows us to calculate network 
requirements.   
 

Packet Sizes For 3 Party Conference 
 

Protocol Data Size Message Type Byte Overhead 
Lean 80 Join 282 

 80 During 66 
 160 Join 286 
 160 During 66 

Optimistic 80 Join 345 
 80 During 141 
 160 Join 345 
 160 During 141 

Sessions 80 Join 345 
 80 During 141 
 160 Join 345 
 160 During 141 

Stateless 80 Join 299 
 80 During 299 
 160 Join 300 
 160 During 300 

Table 5.1 Packet Sizes for Different Messages in Bytes 

5.3.5 Recommendations 

This section will use the test results to recommend how the system should be used and 
what network requirements exist.  We recommend use of the Lean protocol with 160 byte 
packets.  Bandwidth requirements vary depending on the size of the conference, and are 
outlined in Table 5.2.  Link latency ceilings also vary with conference parameters, but a 
typical conference will require less than 80 ms of network latency for total quality or less 
than 380 ms for tolerable quality.   
 
The Lean protocol is superior to others in terms of speed and size.  The one failing it has, 
is that it lacks fault tolerance.  We elect to use this protocol by default, only opting for the 
Sessions protocol if the network is unreliable, but the situation can tolerate the extra 
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delay.      

5.3.5.1 Network Requirements 

Before we calculate network requirements, let’s stop and review the rate of data 
production.  The G.711 codec used creates 8 bit audio samples to send over the network.  
Because voice is sampled at a rate of 8000 samples per second, the byte rate is 8000 bytes 
per second.   Refer to Appendix B for a refresher on these calculations.  Thus, 160 byte 
packets represent 20 ms of audio and 80 byte packets represent 10 ms of audio.   
 
Also, 160 byte packets and 80 byte packets incur roughly similar seal and unseal 
latencies, with the differences numbering in the tens of microseconds.  The Lean protocol 
adds about 66 bytes of overhead to each message, regardless of size.  This is a 
significantly larger percentage of size for 80 byte messages than 160 byte messages.  
Thus, to reduce network congestion and reduce link requirements we choose 160 byte 
messages.   
 
Of course, by that logic, we might increase the packet size even more, say to 320 bytes.  
However, the size in milliseconds of voice production for each packet is essentially added 
to the total lag.  That is, before we can encrypt a 40 ms packet, it must be produced first.  
We cannot seal the first part of the message before the last part is produced.  Thus, 
increasing the message size to reduce overhead is unreasonable beyond a certain point.  
160 byte messages have a small enough duration that the reduced message size overhead 
is acceptable.  Message size remains, however, a parameter that future users can adjust to 
fit their needs.   
 

 
Figure 5.7 Production/Playback Delay Breakdown 
 
With these 160 byte messages and the Lean protocol, the maximum network latency for 
total quality is about 80 ms.  This comes from ~100 μs send side latency, ~100 μs receive 
side latency, and 20 ms of production time.  For tolerable quality standards, we can have 
about 300 ms more latency in the network.   
 
The bandwidth requirement depends on the number of participants, due to the peer-to-
peer nature of routing.  It also depends on the percent of time that the speaker is actually 
speaking, as VoIP’s efficiency is due to routing only the non-negligible speech data.  The 
bandwidth required is then 226 bytes / 20 ms * percent utilization * (number of 
participants -1).  Table 5.2 illustrates this information.  By comparison, 80 byte chunks 
would require about 30% more bandwidth.   
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Participants Utilization
Bandwidth 
(bytes/s) 

2 0.33 3729 
2 0.66 7458 
2 1 11300 
3 0.33 7458 
3 0.66 14916 
3 1 22600 
4 0.33 11187 
4 0.66 22374 
4 1 33900 
5 0.33 14916 
5 0.66 29832 
5 1 45200 
6 0.33 18645 
6 0.66 37290 
6 1 56500 

Table 5.2 Bandwidth Requirements for 160-Byte Chunks 
 
Because tolerable and total quality standards allow only 1% and 0% packet loss rates, 
links to support the conferences tabulated in 5.2 require roughly the full amount of 
bandwidth. Also note that if there are multiple concurrent speakers, the amount of 
bandwidth needed would increase in proportion.  If the link capacity is the same size as 
the required capacity, concurrent speech could result in packet loss.  Thus, network 
deployment should take into account whether this is a concern.  Similarly, concurrent 
speech roughly doubles the seal and unseal latencies, as shown in the test section.  If brief 
departures from quality standards are intolerable, the network must have short enough 
latency to stay within the bounds even during such occurrences.   
 
Another interesting point to note is that the audio sending stack is a single thread.  This 
means, that if the packet size is 20 ms, and the hardware cannot seal and package the 
chunk in under 20 ms, the next packet of audio will be late into the thread.  This excess 
latency will accrue with each packet, causing more and more delay (Figure 5.8).  The 
system can only “catch up” when there are pauses in speech.  
 

 
Figure 5.8 Increasing Seal Delays 
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This is also the case when join messages or concurrent speech increases the send latency.  
Normally, these are rare enough and pauses in speech are frequent enough that this will 
not be a problem.  If the system is deployed in a unique scenario with incessant 
concurrent speech and/or frequent joins, it is important that the hardware can handle it 
fast enough that the delay does not increase.  Other possible solutions to this case are 
described in the future work section, in which considerations for future systems are 
discussed.   

5.3.5.2 Subnet Connection Requirements  

With these calculations behind us, we can make recommendations for low performance 
links between subnets.  Four low performance links were examined for the purpose of 
connecting the remote subnets: TCDL, Inmarsat, Connexion, and Iridium.  TCDL, 
Inmarsat, and Connexion all perform well enough for tolerable quality standards.  
Unfortunately, the latency of the Iridium satellite connection make it impossible for use 
in normal conversations.   
 

Link Bandwidth (kbps) Latency (ms) Error Rate (bps) 
TCDL 10000 2 10-7 

Connexion 128 325 10-6 

Inmarsat 128 325 10-5 

Iridium 2.4 2000 10-4 

Table 5.3 Connection Properties 
 
TCDL is a line of sight, terrestrial wireless link.  Inmarsat, Connxion, and Iridium are all 
satellite data links.  Inmarsat and Connexion are privately held networks made 
commercially available, while Iridium is used by the US government. Table 5.3 shows 
the connection properties of each; borrowed from [19].   
 
Because the subnet aggregators in the system design combine multiple streams into a 
single cohesive voice stream, there are a maximum of two streams on the link at any 
given time.  This occurs when there are speakers in both subnets.  Consequently, the max 
required bandwidth is 226/.020 * 2 * 100% utilization = 22,600 bytes per second = 180.8 
kpbs.  TCDL covers this easily, while Connexion and Inmarsat just miss the boat.   
 
However, we can reasonably expect that such high bandwidth scenarios are very rare.  
When they occur, they are quickly ended.  Moreover, when they occur, speech is often 
inaudible anyway, because there are multiple speakers.  Thus, dropped packets only 
degrade speech that is already unusable.  When there is only one speaker, and the 
utilization is under 100%, the required bandwidth is less that 90.4 kbps.  Connexion and 
Inmarsat can make this grade; Iridium is nowhere close, providing about 3% of the 
necessary bandwidth.   
 
As for latency, TCDL once again makes the grade for total quality.  With a 2 ms latency, 
there is 98 ms left over for the seal/unseal, aggregation, and voice production.  Even 
when there are several concurrent speakers in each subnet and there is a lot of overhead 
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because aggregators have to unseal and reseal the data, the total latency should be well 
within the bounds set.  20 ms for production, 2 ms for latency, and a few microseconds 
for each seal/unseal call is still less than the total quality standard 100 ms, unless there 
are hundreds of speakers.  When there are fewer speakers, the latency only goes down. 
 
With Inmarsat and Connexion, the data links are the latency bottleneck, costing 325 ms. 
Because this latency isn’t affected by number of speakers (unlike seal/unseal), total 
quality is impossible.  However, it is well within the bounds for tolerable quality (400 
ms).  Iridium is out of the ballpark with a 2 second delay.  It could potentially be used 
with radio-like speech protocols, however.   
 
Thus, our measurements in this chapter have allowed us to asses the quality on a local 
subnet as well as in the two-tiered low performance link model.  We recommend that 
satellite links such as Inmarsat and Connexion only be used when total quality is not 
expected and Iridium not be used for typical conversations.  However, the TCDL wireless 
link is usable for any conversations requiring total quality.  
 

5.4 Usability  

Here we examine the usability of the system, comparing it to the design goals laid out. 
Goals included: use of GUIs, intuitive and easy controls for joining conferences, clarity 
of error/status information, and installation ease.  The implementation has achieved all of 
these, with the exception that each system component needs to be started individually.  
Changing the startup process to be more cohesive is a subject of future work.    
 
In order to load the system, the user must start X-Lite, Pidgin, and YATE separately.  
Also, Pidgin must have the YATE plug-in loaded.  This is four steps, which could be 
reduced to one with a script that executes all three programs and modifies the Pidgin 
preference file to load the proper plug-in.  On the plus side, running the programs 
requires a click of a desktop icon in Microsoft Windows, or a single command from the 
Linux terminal. 
 
Because the user joins and leaves conferences from the membership management 
module, the user interacts with this component the most.  Its usability is thus the most 
important.  By using Pidgin, we piggyback on the sleek GTK-based interface they have 
setup.  Once the user has loaded the entire system, joining conferences is a simple as a 
single click on the conference room of choice.  Figure 5.9 shows the Pidgin window in 
which users can view available conferences.  The information is clearly displayed, and 
the join action is easy and intuitive.  Adding and removing conferences requires two 
clicks in the file menu.  The graphic interface is also useful for loading the YATE plug-in 
from Pidgin, and includes simply selecting the appropriate option from the plug-in 
selection window (see Figure 5.10).   
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Figure 5.9 Pidgin Window for Conference Joins 
 

 
Figure 5.10 Pidgin Plug-in Load Window 
 
Once a user joins a conference, Pidgin opens a new window that displays the conference 
membership.  The display changes in real time as membership changes, ensuring that 
users are kept abreast of this important information.  This is shown in Figure 5.11 .   
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Figure 5.11 Pidgin Chat Window Displays Real-Time Membership Changes 
 
The Pidgin GUI also makes it very easy to display errors.  For example the user is always 
notified with a friendly and informative message box of the system’s status.  It should be 
clear, as shown in Figure 5.12, whether or not the user has configured the system 
properly.  The message also includes instructions for how to remedy the situation when 
there is an error. 
 

 
Figure 5.12 Pidgin Error Display Message 
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Figure 5.13 X-Lite Phone Interface 
 
The other part of the system that the user interacts with is X-Lite, which the user must 
open and use to dial in to the YATE system.  This requires the user to appropriately 
configure her/his instance of X-Lite from the options menu, specifying the IP address of 
the YATE system and her/his username.  Once this is done, the process does not need to 
be repeated for subsequent use.  Dialing into YATE requires two clicks.  The user 
interface is quite intuitive, as it resembles a typical handheld telephone (see Figure 5.13).  
It also clearly displays errors in the window.   
 
While YATE is needed for the system, the user does not interact with it, save to turn the 
system on or off.   
 
Configuration and Installation of each of the components is complicated, and detailed in 
Appendix C.  Linux installation involves obtaining the software for each component, 
compiling it, and installing it. Windows installation is similar, although X-Lite has an 
installer on this platform.  Configuration is also complicated, but the user can either copy 
the config files from the appendix verbatim, or obtain a preconfigured version.   In order 
to reduce this configuration and installation cost, a future version could include a script or 
installer that configures each component properly and then installs them.   Similarly, the 
improved version could add a startup script that launches all three components at once, so 
that the user is ready to join conferences after a single click.  
 
On this basis, the system fulfills usability requirements.  It consistently uses graphic 
displays, makes joining and leaving conferences intuitive, and keeps the user updated of 
important information.  Startup and installation are more complicated than necessary, and 
are thus the subjects of future development.     
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5.5 Evaluation Wrap-Up 

This chapter has compared our first pass at implementation against the design goals set in 
chapter 3.  Requirements for end-to-end security have been met, as have call quality 
standards on well-connected subnets and certain low performance links.  Results show 
that the overhead added by the fastest PKGE protocol is small compared to the total 
quality standard, making the network latency the most important determinant in packet 
delay.  PKGE does not seem to affect packet loss, provided that the extra bandwidth 
required does not exceed that bandwidth on the network.  Major usability goals are 
complete, except for ease of installation and startup.  Similarly, functionality goals were 
completed, except for implementation of the aggregator nodes in the two-tier design.  
These two features are left for future work.   
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6 Future Work 

In this section we reflect on the lessons learned from this project and suggest a next 
generation system.  The next system will revolve around GROK, which addresses some 
of the weaknesses in its predecessor PKGE.  Moreover, it should focus on improving 
usability and cohesiveness of the system, so that users are not aware of the many 
components.   
 
Also, based on the results of concurrent speech and membership changes, future 
designers should make optimizations in the system based on the expected nature of the 
calls.  Optimization would be based on membership size, frequency of concurrent speech, 
and frequency of ‘joins’ and ‘leaves’.  As a final step, the next pass at secure VoIP should 
actually implement and test the two-tiered design to verify the success that our analysis 
suggests.   
 

6.1 Replacing PKGE with GROK 

GROK is the successor to PKGE, currently under development at Lincoln Laboratory.  It 
features a number of improvements, including the ability to run multiple instances that 
use a common key database and the ability for keys to persist in a database after the 
application terminates.  It even enables completely different key encapsulation protocols.   
 

 
Figure 6.1 Running Multiple Instances of GROK 

 
Allowing multiple applications to run GROK concurrently enables improvements to the 
VoIP system.  The first such change is integration with secure text chat plug-in for Pidgin 
developed in [40].  Both Pidgin and YATE could use GROK simultaneously, using the 
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same encryption keys.  Thus, group conversations could take place that consist of both 
voice and text.  Moreover, with Pidgin using GROK, the system could force key 
exchanges to take place over Pidgin’s TCP connections rather than YATE’s UDP 
connections.  The advantage of this is that key delivery would be ensured, even on the 
unreliable networks that we intend to deploy on.   This is important, particularly for the 
Lean and Optimistic protocols which only distribute keys once, making packet loss 
disastrous for the system.    
 
Another logical step forward is the addition of a video conferencing program and/or 
secure email program to the application suite.   Because multiple applications can share 
keys, these applications would not prevent the use of voice and text chat while it is 
running.   
 
Moreover, because keys persist even after the applications terminate, keys could be re-
used by future conversations.   The results show that a user joining a conference is 
particularly costly because of the key distribution that accompanies it.  With key re-use, 
this cost would be eliminated.  With the Lean protocol, this is the only significant 
overhead added by security.  Therefore, when using the Lean protocol for securing VoIP 
among a group that has existed in the past, GROK would add virtually no overhead.  
However, GROK will periodically change keys to achieve forward secrecy.   
 
Even though the benefits of using broadcast encryption for key distribution are clear 
(described in 2.1.2), GROK will enable use of different methods.  Examples include 
Dynamic Set Key Encryption (DSKE) [41] and S/MIME.  The value of this extensibility 
is the ability of the designer to choose the protocol based on the exact needs of the 
system.  Moreover, it will allow future protocols to be seamlessly added to the system as 
well.   
 
Thus, use of GROK brings a host of improvements to the VoIP system we have outlined 
in this thesis.  The next generation should replace PKGE with the newer library.   

6.2 Functionality and Usability Improvements 

In addition to the changes brought by GROK, the VoIP system we developed is in need 
of functionality and usability improvement.  Usability is hindered by the use of multiple 
different applications that makeup the VoIP system, and the need to be independently 
installed, configured, and run.  Within the applications themselves, users do not always 
have the maximum level of interaction with the system and some errors are not handled 
gracefully.  Users could be given more power to use the functionality of the system.   
 
The prototype developed requires users to launch three applications separately: X-Lite, 
Pidgin, and YATE.  Then users must manually load the YATE plug-in for Pidgin and 
manually connect X-Lite and YATE.  This functionality can be performed automatically 
with a single script.  It was left out of the prototype due to time constraints.  It is a 
requirement for future versions that they should allow users to start the system and be 
ready to join conferences with a single action.   
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Furthermore, while the Pidgin interface is aesthetically pleasing and convenient to use, 
we could give the users more information.  For example, users do not know which other 
users have added the YATE plug-in and are ready for voice chat.  A simple icon next to a 
user name could give this information.  It could be disseminated by the system in the 
same way that IP info is disseminated, by overloading the text message functions.  On 
this matter there is another needed improvement.  Users who do not have the plug-in 
loaded will get useless IP info printed to their conversation window.  Instead, IP 
information could be hidden in a span tag, in which the actual displayed message is only 
“VoIP Info.”  This solution is more graceful for users not running the plug-in. 
 
It is also logical to authenticate IP addresses that are distributed to prevent hackers from 
diverting the flow of voice data by passing users erroneous information.  The next 
generation system should include authentication of this certificate-based authentication, 
as is being developed at Lincoln Lab. 
 
In the previous section we noted that key distribution with Pidgin would improve 
reliability.  As an additional improvement, users might have an option from within Pidgin 
to re-key the group.  This way if keys are lost in transit or due to failures of the end user’s 
computer, a simple re-key would fix the problem.  Without GROK, this would require 
Pidgin to tell YATE to re-send the key encapsulation.  YATE would have to store the key 
encapsulation indefinitely, and resend it when needed.  With GROK in place, Pidgin 
could send the key encapsulation itself.   
 
These changes would give the user more information and improve system robustness.  It 
would make the system easier to run and use.  They are suggestions for a better second 
implementation of secure VoIP.   

6.3 Addressing Usage Variables 

Perhaps the most important lessons learned for the next generation system involve the 
various conference usage variables that affect the system performance.  The results from 
chapter 5 show that ‘join’ messages cause slowdowns of roughly 30 ms on each end, 
which is longer than the duration of the voice included in a single packet.  Similarly, 
concurrent speech doubles the required bandwidth, and doubles processing latency.  
Because these events are assumed to be rare, our system does not take measures to handle 
them.  However, a future system might be adaptable to handle such situations for 
completeness and robustness.   
 
If receiving a join message causes a 30 ms slowdown due to message unsealing, then the 
processing of the next message is delayed.  Ideally, for 20 ms voice messages, messages 
should be processed every 20 ms.  Longer than 20 ms delays cause the system’s audio to 
slowly “get behind”, assuming that the packets are processed in serial.  That is, the delay 
beyond 20 ms is compounded with each join message, so after 10 such messages, the 
system will be 100 ms behind.  There will be 100 ms of delay in addition to the 
transmission delay and regular processing latency.  As these incremental delays add up, 

 83



the total end-to-end delay rapidly exceeds the upper limits for quality. 
 
The system compensates for this during silent periods, during which it can “catch up”.  
That is, if the system is behind by 20 ms, it needs only 20 ms of silence during which no 
packets are received to recover.  Our system assumes that this is the case.  This is 
reasonable, as [21] reports that typical conversations include 200 ms “turn-taking” 
silence, which occurs in between speakers.  Consequently, roughly 20 join messages can 
be received for each speaker turn.  Thus, if the speaker changes frequently (with 200 ms 
of silence) the system can accommodate a high number of joins.   
 
On the other hand, a conference with long incessant speech and a high number of 
listeners coming and going will likely experience increasing delays.  Consider a scenario 
(irrelevant to the DoD) of a web concert with incessant music from a single source and 
thousands of listeners coming and going.  The system developed would not fare well 
here.   
 
A potential solution would be to systematically drop packets as delays accumulate.  For 
every 20 ms of delay accrued, drop one 20 ms packet.  This of course will quickly 
decrease call quality due to packet loss.  However, one packet dropped every two seconds 
would remain within the tolerable quality bounds.  Another solution would be to use 
larger packets, 40 ms for example, such that a join message does not cause accumulated 
delay.   
 
The next system could also allow for greater packet loss by using a Packet Loss 
Concealment (PLC) algorithm as described in Appendix I of [25].  Such algorithms can 
improve sound quality in the face of packet loss by employing a number of techniques, 
including repetition of the received packets.  In fact, the G.711 PLC algorithm can 
tolerate packet loss of 5% and still have acceptable quality [21].  In this case, 50 ms of 
audio can be dropped every second, allowing for about five ‘join’ messages per second.  
Thus, future system designers should consider the usage cases and determine whether 
PLC algorithms, changes in packet size, or systematic packet loss are appropriate.   
 
Concurrent speech also increases processing latency.  However, with the Lean protocol 
requiring virtually no processing time, the main drawback from multiple speakers is the 
increase in required bandwidth.  If the usage case of the system involves frequent 
concurrent speech from two or more parties and requires this speech to be transmitted 
without packet loss, the network bandwidth must accommodate this.  If the network only 
has enough bandwidth for one speaker, and two users speak at the same time, packet loss 
with exceed 5%.  Thus, the solutions for accumulated delay are not helpful here.   
 
Instead, the system designer might consider a different codec, which is something we did 
not consider in this thesis.  More audio compression invariable results in lower packet 
loss toleration and more audio processing.  However, if the codec sufficiently reduces 
bandwidth requirements, then packet loss will not be an issue.  Similarly, with adequate 
transmission latency and use of the Lean protocol, extra processing might not be an issue 
either.  Use of a codec such as G.729A [26] requires only 20 bytes for 20 ms, compared 
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with 160 bytes for G.711.  Excluding the bandwidth required for IP, RTP, and UDP 
headers, this is a factor of eight decrease.  This could alleviate bandwidth issues for a 
system.  Thus, a designer should consider different compression algorithms depending on 
the expected bandwidth of the network and the expected bandwidth required by the 
specific usage.   
 
Another potential, and perhaps less desirable, solution is to allow quality degradation 
when there are multiple speakers.  This solution assumes that the loss of intelligible voice 
will signal users that concurrent speech has occurred and one user must stop talking.  In 
general, the individual voice streams during concurrent speech are unintelligible anyway, 
even if transmitted faithfully.  This is particularly true if there are more than two 
speakers.   
 
Thus, there are a number of scenarios that the system we describe does not cover.  
Depending on the needs of a next generation system, these scenarios can be accounted for 
using a combination of solutions.   Solutions to ever increasing audio delay include 
deliberate packet loss, packet size changes, and PLC algorithms.  Similarly, inadequate 
network bandwidth (due to concurrent speech or otherwise) can be alleviated with 
compression algorithms.   

6.4 Implementing the Two-Tiered Model 

In this thesis, we designed an elegant solution to minimize the impact of a weak link in a 
disadvantaged network.  Our test results in chapter 5 show that the solution is feasible 
and could be used with several high latency, low bandwidth satellite links.  However, the 
system never actually implements the design.  The next generation system should use the 
building blocks of the first pass to actually develop the two-tiered model.   
 
This development would require expanding the peer-to-peer model by implementing the 
aggregator node functionality specified.  An aggregator node forwards audio data from 
the speaker on its network across the weak link.  When there are multiple speakers, the 
aggregator combines them into a single stream, saving bandwidth.  Moreover, the 
implementation would require an algorithm for dynamically selecting aggregator nodes 
as the conference membership changes.  Because the current model already has 
functionality for combining voice streams, these changes are reasonable.   

6.5 Summary 

In this section we reviewed possible developments in a second pass system for secure 
VoIP.  Logically, the system would be based around PKGE’s successor GROK, enabling 
multiple simultaneous secure messaging applications.  It would also enable new key 
encapsulation methods and key distribution methods.  Moreover, the next system should 
work at improving some of the usability flaws of the one we describe.  Such flaws 
include having multiple separate components that each require installation and startup, 
and limiting the amount of information and control the user has over the system.   The 
new system should also build off the lessons learned here, and be designed with more 
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specific usage in mind.  This way the designer could consider issues such as the audio 
codec used, the packet size, and how to handle ever increasing audio lag.  Of course, the 
next system should also fully implement the two-tiered design for disadvantaged 
networks.     
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7 Conclusion 

At the conclusion of this thesis, we reflect on what we set out to do.  Our purpose was to 
develop a proof-of-concept VoIP conference system that showcased the use of PKGE for 
secure group communication in a real time setting.  This proof-of-concept would advance 
the DoD vision for improved communication, even in disadvantaged networks.  Most 
importantly, the project was to contribute insight for further VoIP system development 
and to guide design decision for a second generation system.  In short, we accomplished 
each of these goals. 
 
We have a working VoIP conference system, composed of several different technologies 
integrated to accomplish our design goals of security, performance, functionality, and 
usability.  Moreover, our analysis of the system suggests that it would perform well in 
disadvantaged networks, if our design for such situation were fully implemented.     
 
Looking back at the engineering challenges encountered and solutions implemented, we 
came up with a few guidelines for the next generation.  PKGE should be replaced with its 
successor GROK, which will allow multiple concurrent instances with a cohesive key 
database, thereby allowing multiple secure communication technologies.  This will 
increase robustness by allowing the most reliable transmission protocols to be used for 
key distribution.  Furthermore, the system, while composed of several different 
technologies, should be integrated well enough that its many components are concealed 
from the user.   The next system should also consider specific usage cases in order to 
make appropriate trade-offs in design, between packet loss and packet delay or 
functionality and performance. 
 
Because we designed the system with extensibility in mind, it should be possible to make 
these additions, and develop appropriate new features as well.  A next generation system 
might add end-to-end confidentiality or authentication to membership management and 
location information distribution.  It might also redesign the entire system for different 
goals entirely.   
 
Whatever the case, this thesis should provide a solid starting point for upcoming 
developments.  It highlights the challenges and needs of a VoIP system, and evaluates a 
set of solutions.   
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Appendix A Relevant YATE Details 

This section contains an overview of the relevant components of Yet Another Telephony 
Engine (YATE). Included is an examination of YATE software design, analysis of the 
conference and RTP code modules, and configuration file information. For simplicity, 
only information directly relevant to secure conferencing using PKGE is included.  

Note that the information here was acquired in part from [17] and [36], but mostly was 
assembled by viewing source code and debugging. Consequently, I make no guarantees 
about its veracity. It is merely the behavior observed.  

YATE is a multifaceted software telephony engine capable of executing SIP call 
transactions, sending and receiving RTP streams, routing or redirecting calls to end users 
or servers, interfacing with the Public Switch Telephone Network, and acting as an H.323 
gatekeeper, among other things. However, because the focus of this project is VoIP 
conferencing, we are primarily concerned with its functionality to host conference calls 
and mix multiple voice streams. Moreover, because our goal is to add new functionality 
to the system, extensibility of the software is vital. It is here that we begin our 
examination of YATE.  

A.1 Software Design  

Much of the YATE functionality, such as its ability to understand a given protocol, is 
encapsulated in a series of modules that communicate amongst themselves using a well-
defined message passing system. The telephone engine provides the foundation for these 
modules with code to receive, queue, and dispatch messages. It also contains the classes 
and interfaces that define data flows for call transactions and media streams. These are 
ultimately implemented and subclassed for module-specific functionality. Of course, the 
telephone engine core also contains code that initializes each module and launches it in a 
separate thread, readying it to receive messages and carry out its duties. YATE is strongly 
object oriented; it is written in C++. The telephone engine provides support for Perl, 
PHP, and Python scripts to run in separate processes and communicate messages with the 
engine via TCP sockets or Unix pipes.  

A.1.1 Message Passing System  

The message passing system of YATE is its communication backbone. There are four 
classes to focus on here: Message, MessageRelay, MessageDispatcher, and 
MessageReceiver.  
 
A Message instance encapsulates data that is passed between modules. The message has a 
name, which indicates the desired course of action, and a set of parameters that provide 
any information needed for that course of action. The parameter names and values are 
String objects. For example, if YATE receives an incoming call to a conference room, it 
would send a call.execute message to the conference module, with parameters 
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containing the conference room number, the caller, whether to let the user hear her/his 
own voice, etc.  
 
A MessageReceiver object contains the functionality for handling any number of 
messages. The YATE modules are MessageReceiver subclasses, and thus contain the 
appropriate functions that are invoked when messages are passed to them. Specifically, a 
MessageReceiver’s received method is called when it is passed a message. Carrying 
on our example from above, the conference module is a MessageReceiver which handles 
several messages including call.execute. Its received method dispatches to other 
functions based on the type of message received. For call.execute, received 
dispatches to a function which creates a new conference leg an attaches the incoming 
party to it.  
 
MessageReceiver objects are wrapped in MessageRelays that specify which messages 
they are equipped to handle. These MessageRelays are installed in the telephony engine. 
When the engine receives a new message, it jumps through a list of all installed relays in 
order to find ones that can handle the given message. The received method of each 
applicable MessageReceiver is invoked in order of priority for the message. Ultimately, 
one of the received methods will decide that the message was intended for it. Then, it 
will execute the appropriate functionality and tell the engine it can stop calling 
received methods by returning true. In the example, the conference module wraps 
installs a MessageRelay in the telephony engine for each message it is equipped to 
handle, including call.execute. When the engine receives the message, it may try a 
number of MessageReceivers that can handle it, before the conference module’s receiver 
is invoked. The conference module will handle the message and return true so the engine 
will stop.  
 
The engine itself receives the message whenever a module calls its dispatch method, 
passing a Message object as a parameter. The engine then refers to its 
MessageDispatcher, which holds all of the installed MessageRelays. This typically occurs 
in a new thread.  
 

 
Figure A.1 Message Flow Diagram 
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A.1.2 Data Flows  

While the message passing system allows different modules to send instructions to each 
other, modules frequently pass entire DataBlocks to one another in order to take 
advantage of the array of functionality offered by YATE. DataBlocks are simply 
encapsulations of chunks of bytes. They are used primarily to hold audio data being 
passed between modules for processing. For example, after audio data enters the YATE 
system, it is processed using the G.711 codec. This process is carried out by a 
DataTranslator instance that provides this function. The DataBlock is passed in to the 
DataTranslator and must subsequently be passed to another module for continued 
processing before being passed to the RTP module for transmission. 
 
More specifically, data flow take place between DataConsumer objects and DataSource 
objects.  A DataSource instance produces DataBlocks that are consumed by 
DataConsumer objects.  The two classes are linked via composition; each contains an 
instance of the other as a member variable.  Thus through the course of data processing 
by YATE, a DataBlock may be passed between several sources and consumers, each 
modifying it in its own way.  Modules use these classes by subclassing them, and adding 
their own module-specific functionality.  An RTPConsumer passes data to a socket, a 
ConfConsumer mixes multiple data streams and reroutes them to different endpoints, and 
a DataTranslator compresses or decompresses data.   

A.1.3 Modules  

The modules themselves provide the actual functions for YATE.   They go to work when 
passed Messages and DataBlocks.  Some important modules include the SIP stack, RTP 
stack, conference bridge, and several routing modules.  By subclassing the Module class, 
it is easy for third party developers to add their own functionality to the YATE system.  
Modules must simply register a few MessageRelays to have their functionality invoked.  
Moreover, by understanding the ins and outs of certain key modules, developers can 
make modifications that suit their needs.  Thus, I will take a closer look at two important 
modules for the secure conference system.  

A.2 Relevant Modules 

Instead of implementing new modules, I elected to change existing modules to enable the 
desired behavior.  I do this because the existing modules' behavior is very close to the 
behavior of the the secure conference design, and a few tweaks make this project's 
implementation simple.  Thus, we require an intricate examination of modules we intend 
to modify.  

A.2.1 The RTP channel 

The RTP channel starts with an RTPProcessor object which encapsulates the socket and 
address data for an RTP session.  An RTPSession object subclasses the RTPProcessor, 
and contains all the additional data and functionality for an actual RTP session.  This 
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extra data includes an RTPSender, which packages and sends RTP packets using the 
RTPProcessor socket data, and an RTPReceiver, which receives RTP data on the same 
sockets.  It also contains an RTPTransport object which uses the socket and address data 
of the RTPProcessor to invoke the actual socket functions.  Naturally, RTPSender and 
RTPReceiver rely on these methods.   

If this sounds confusing, the point is actually to achieve clarity and extensibility through 
functional separation.  For example, the sole function of RTPSender is to create and RTP 
packet, which involves adding the appropriate headers.  For it to send the packet, it 
invokes RTPTransport's rtpData function.  RTPTransport handles all socket 
interaction.  In this way, there should be no confusion about each class's role.  Also, it is 
possible to use the classes independently of one another.  If the entire packaging and 
sending of RTP packets were rolled into one method, then it would be impossible to 
dispatch packets without first adding RTP headers.  If this seems useless, consider a 
scenario that required resending prebuilt packets.  Combining packing and sending would 
force unnecessary computation. 
 
In order to integrate this functionality back in with the message passing and data flow 
models described above, the RTPSession class is extended by YRTPSession.  This, along 
with RTP's very own DataConsumer and DataSource YRTPConsumer and YRTPSource 
are wrapped in a YRTPWrapper.  With this setup, data enters YATE through the 
RTPTranport methods that YRTPSession accesses by invoking methods in its 
RTPReceiver.  Then the data is moved to the YRTPSource, which can feed the data into 
the rest of the system: compression, conference bridging, etc.  On the other side of things, 
data leaves YATE by passing into the YRTPConsumer from some DataSource, and then 
leaving via a UDP socket in the YRTPSession's RTPTransport instance.  This is invoked 
with the RTPSender.   

A.2.2 The Conference Module  

With the RTP module taking care of all things network related, let's move over to the 
conference module, where we find the conference bridge functionality.  This of course 
consists of mixing audio signal from several sources and passing it back to each of the 
conference participants.  In this module, we've got the ConfRoom, ConfChan, 
ConfSource, ConfConsumer,  and ConfDriver. 
 
ConfRoom encapsulates a list of ConfChans, which do little more than hold 
ConfConsumers.  ConfConsumers are the DataConsumers for conferences, in that they 
bring data into the module.  When a ConfConsumer has accumulated enough audio data, 
it triggers the mixing method of the ConfRoom it is a part of.  This method combines all 
the data from its list of channels and their consumers, and forwards it out to the 
ConfSource which is the data bridge out of the module.  
 
ConfDriver handles the message passing part of the module, having installed relays into 
the telephony engine for handling a number of messages, most notably call.execute 
messages marked for the conference module.  When it receives a call.execute that signals 
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an incoming call to a conference room, it creates a new ConfChannel and adds it to 
appropriate ConfRoom.  If the ConfRoom does not exist, it creates it.  The object model 
diagram in A.3 should clarify the various dependencies here.  

A.3  Configuration Files 

YATE has a pretty snazzy configuration file interface, making it easy to add additional 
configuration files for new modules. The Configuration class encapsulates a system 
configuration file.  It provides a host of functions, such as int getIntValue(const String& 
sect, const String& key, int defValue), which allow modules to easily extract 
configuration parameters from the files.  The Configuration class constructor accepts a 
String parameter that defines a file of type .conf saved in the conf.d subdirectory of 
yate. Code Chunk A.1 shows how Conference.conf (see below) is accessed by the 
conference module using the Configuration class.   
 
 
    Configuration s_cfg; 
    String s_pin; 
    String s_system;     
    … 
    s_cfg = Engine::configFile("conference"); 
    s_cfg.load(); 
    s_pin = s_cfg.getValue("user","pin",PKGE_USER_PIN); 
    s_system = s_cfg.getValue("general","system",PKGE_SYSTEM); 
 
Code Chunk A.1 Accessing Configuration Files 
 
Because deployment of the secure conference system requires specific configuration of a 
few modules, the important config files are described below.  The examples given 
include the parameter values needed for the secure conference system.  System users and 
developers should use these files.   
 
Conference.conf - This configuration file was added as part of this project.  It specifies 
PKGE system to use for the encrypted conference, and what the pin of the user is.  Here 
is what was used:  
 

[general] 
system="C:\pkge\TESTSYSTEM\" 
pin=12345 

 
Ysipchan.conf - Here we define the SIP channel parameters, such as the port to use and 
the IP address to bind to.  The file used was: 
 

[general] 
port=5066 
addr=localhost 

 
Regexroute.conf - This file handles call routing.  That is, it uses regular expression 
parsing of called numbers to dispatch the call to the appropriate module.  Each module 
has a routing prefix.  For example, a prefix of "conf/" routes a call to the conference 
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module, while the prefix "tone/" routes the call to a tone (dial, busy, etc) generating 
module.  The regex parsing can be specified differently for each caller, by specifying in 
the contexts section which routing section in the file to use.  An example is included here: 
 

[default] 
^0$=tone/dial 
^1$=conf/1; lonely=true 
^2$=sip/Roger@192.5.135.137:5066 
^\(.*\)$=\1 

 
This configuration file allows users to call into a dial tone (0), join a conference room (1), 
or make a SIP call to a specific user (2).   The final line lets users compose their own 
routing string.  For example, a user could call “sip/user@host:port” to have a SIP call 
made.   
 
Regfile.conf - This config file specifies users and their passwords.  YATE will only route 
calls from users included in this file.  Example: 
 

;usernames, passwords included in the form: 
;[user] 
;password= 
[Steve] 
password=Steve 
[Roger] 
password=Roger 
[Joe] 
password=Joe 

 
Extmod.conf – This config file specifies what external scripts the telephony engine 
should launch, and how it should connect to them.  The scripts to launch are listed in the 
“scripts” section.  Scripts are connected using the listeners specified in square brackets, 
which listen for a certain connection type on a given address and port.  Example: 
 

[general] 
[listener A] 
type=tcp 
addr=0.0.0.0 
port=5039 
role=global 
[scripts] 
C:\yate3\yate\scripts\ConfNet.py= 
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Appendix B Relevant VoIP Details 

Voice over Internet Protocol (VoIP) is a recent technological innovation in 
telecommunications, crossing the infrastructure of the internet with the function of the 
public switch telephone network (PSTN). VoIP improves efficiency and flexibility of 
voice communication.  

In this section, I review the technology behind VoIP, including system components and 
protocols involved. VoIP is compared with other communication technologies on the 
basis of its security, reliability, and quality. I recommend that readers unfamiliar with 
VoIP technology start here before diving into chapters 3 and 4, which contain more 
technical detail.  

B.1 VoIP vs PSTN  

The PSTN is a circuit-switched network. The entire duration of a phone call requires a 
dedicated circuit between the two endpoints for voice signal transmission. The circuit is 
set up using a complex system that has evolved for over one hundred years through 
research by AT&T and Bell Labs. Originally, this meant an operator manually connected 
the pieces of a circuit at a switch. Today, circuit-switching has come to involve a 
hierarchical, automated system that uses phone numbers standardized by the International 
Telecommunication Unit (ITU).  
 
The dedicated circuits of a phone call require 64 kilobits per second of bandwidth for 
both directions of communication, thus requiring a total of 128 kbps. It is seldom the case 
that all of this bandwidth is actually used, based on normal human conversation. 
Generally, a only single user speaks at a given time and there are frequent brief pauses in 
speech. Consequently, a significant portion of the bandwidth is wasted.  
 
In order to reclaim this wasted circuit time, packet-switching can be used for voice 
transmission. In this model, voice is broken into chunks or packets and transmitted over 
the wire only when it is actually produced, leaving unused bandwidth open for other data 
transmission. When no voice is produced (silence), bandwidth is not wasted.  Thus, 
bandwidth is shared by users in proportion to the amount needed. VoIP employs this 
model, using Internet Protocol (IP) for packetizing and routing voice calls. In this 
manner, VoIP gets its first advantage over the PSTN.  

B.2 System Components  

A VoIP system includes audio capture, analog-to-digital conversion, data compression, 
call setup, voice data transmission, decompression, conversion to analog, and audio 
playback. Most of this is beyond the scope of this thesis, as I focus on adding security to 
conference calls. However, let’s take a brief look at how these systems are designed.  
 
An end user typically executes a VoIP call using some combination of hardware and 
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software. On one end of the spectrum, Cisco IP Phones are standalone hardware devices 
that mimic the typical PSTN experience. They handle all aspects of the call, from audio 
capture/playback and A/D conversion to using the VoIP protocols for setup and 
transmission. Also common is the use of a softphone, which is a software component that 
performs the data processing and transmission, and leaves the audio capture/playback and 
digital conversion to microphones and speakers. Skype [11] is an example of a softphone.  
 
In between the two endpoints, the VoIP infrastructure can be anything from purely peer-
to-peer to client/server architectures. Calls can use the open Internet, or can use closed off 
networks. These differences depend on the protocols used and the goals of the system 
designers.  

B.3 Important Protocols  

Session Initiation Protocol (SIP) and H.323 are the two main protocols for call setup and 
teardown. H.323 is rooted in the PSTN community and is generally considered more 
complex than SIP; consequently, SIP is rapidly becoming the de facto VoIP standard. 
Thus, I focus on SIP in this thesis.  
 
SIP in an application layer protocol that can use any transport protocol, such as User 
Datagram Protocol (UDP) or Transmission Control Protocol (TCP). It is used to create 
media sessions between two or more parties, the exact nature of which is defined during 
the transaction. For VoIP, SIP creates and terminates real-time audio sessions.  
 
Because some transport layer protocols, such as UDP, guarantee only best-effort packet 
delivery, SIP transactions use their own acknowledgements to ensure proper call setup. A 
SIP transaction typically consists of a request from one party to another, followed by a 
series of responses that indicate the success or failure of the request.  
 
A call setup, for example, would consist of one party sending another party an INVITE to 
an audio session defined by specific codecs, followed by an OK response from the latter 
party. The caller then sends an ACK request to verify receipt of the OK. The session 
itself then takes place using Real-time Transport Protocol (RTP), and ends when one user 
sends a BYE request. A summary of the main SIP Requests and Responses detailed in 
[30] is included in Table B.1.  
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Request Meaning 
INVITE Invites a user to a media session  
ACK Confirms that inviting client has received all responses for a session 
BYE Ends a session 
CANCEL Cancels pending invites 
OPTIONS Request for capabilities of a SIP server 
REGISTER Registers a client’s address with a server 
 
Response Family Meaning 
1xx Information: ringing, queued, etc 
2xx Success 
3xx Redirect Responses 
4xx Client Failure: busy, forbidden, address incomplete, etc 
5xx Server failure: service unavailable, time-out, request not 

implemented 
6xx Global Failure: decline, does not exist, etc 
Table B.1 SIP Requests and Responses 
 
SIP requests and responses need not be passed directly between endpoints, however. In 
order to enable routing, SIP proxy and redirect servers intermediate SIP transactions. A 
proxy server receives requests from one party and forwards them on to the intended 
recipient, and continues to intermediate the rest of the transaction. Redirect servers 
merely resolve recipient user names to IP addresses for the calling party. Thus, users can 
employ either redirect or proxy servers to invite others to a session without necessarily 
knowing their exact locations. The RTP session itself takes place directly between the 
two parties, who are privy to each others addresses after the SIP transaction.  
 
RTP, another application layer protocol, wraps the media data for the session. Because 
real time media does not usually require 100% packet delivery but does require speed 
optimizations, RTP uses UDP exclusively. RTP [31] contains just 12 bytes of headers for 
sequence numbers, timestamps, and payload identification before the payload itself. This 
enables jitter (packet delay variation) adjustments before playback, while being relatively 
lightweight.  
 
Based on this understanding of SIP and RTP, the picture of a VoIP call from setup to 
teardown looks like Figure B.1.   In this example, a SIP server is used in proxy mode.   
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User A User B

SIP Proxy

INVITE user B

ACK userB@host

INVITE userB@host

ACK userB@host

RTP Conversation

200: OK from userB@host
200: OK from userB@host

BYE userB@host

200: OK from userB@host

BYE userB@host

200: OK from userB@host

 
Figure B.1 SIP Setup and Teardown 

B.4 QoS and Security  

Quality of service in the PSTN is guaranteed by a dedicated circuit of a fixed bandwidth. 
The necessary bandwidth for human voice encoding is considered to be 4000 Hz; thus, 
telephony must use 8000 samples per second, according to Nyquist’s Law. Because the 
ITU standard for PSTN communications is the 8-bit G.711 codec, the total bandwidth 
required is 64 kbps for each voice steam. This is a total of 128 kbps for a two person call. 
A VoIP system can mimic this quality by using the same codec.  
 
However, differences in quality arise due to the differences in resource allocation. Due to 
the dedicated nature of circuit switched networks, once a circuit is allocated for a call, the 
call will continue uninterrupted with persistent quality. The ITU standard is 99.999% 
circuit availability time. To the contrast, use of the internet to transmit voice leaves the 
calls vulnerable to network congestion related quality degradations. Because RTP is built 
on top of UDP, voice packets will be dropped when network resources are overused. 
Moreover, voice packets may be delayed if the link is slow or overused. Such decreases 
in quality can occur at anytime as network congestion comes and goes. Thus, while VoIP 
calls require the same 128 kbps of bandwidth for 100% packet delivery, the actual data 
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link requirements may be much higher if other applications share the resources. A work-
around gives priority to real-time streaming data on a shared link. However, this conflicts 
with the principles of net neutrality.  
 
Also, voice packets contain headers for each protocol layer used, thereby adding slightly 
higher bandwidth requirements. RTP has 12 bytes of headers, UDP has 8 bytes, and IP 
adds 20 bytes. This adds 40 bytes of overhead. If 160 byte payload are used (20 ms with 
G.711), then an additional 16 kbps needed.  
 
Because of the shared nature of packet switched resources, VoIP is open to security 
vulnerabilities. The PSTN is a closed system that gives sole access to the phone 
companies. VoIP data is available to anyone at an intermediary hop between two 
endpoints, as well as anyone sniffing a link that the packet traverses. For example, two 
machines on the same Ethernet can see all the same packets.  
 
There are many ways to achieve security in such scenarios. Everything from link layer 
security to separate networks to application layer security can be employed, with 
different advantages and disadvantages. This thesis examines one such method.  
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Appendix C Installation Guide 

This section contains the information necessary for users and developers to install and 
run the VoIP system described in section 4.   

C.1 Linux Installation 

1. Obtain the PKGE source, which is available in subversion from within Lincoln 
Laboratory, at http://subversion/svn/sgc/trunk/pkge.  Configure, make and install 
pkge.  Make sure it installs to /usr/local. 

 
2. Export the directory containing the pkge library files as part of the library load 

path so other programs can link to it.  Use the following command:  
 

export LD_LIBRARY_PATH=/usr/local/lib 
 
3. Obtain the YATE source code files in their modified form.  From within Lincoln 

Laboratory, these files can be found in the group subversion directory 
subversion/svn/sgc/trunk/yate.  Make sure the configuration files are correct, as 
defined in Appendix A.   

 
4. Run the configure script.  Alternatively, do not run the script, and test if running 

make succeeds, if it does, run make install and ignore steps 5-6. 
 

5. Adjust Makefile in yate/scripts to include ConfNet.py in the list of scripts to 
launch.  Adjust the Makefile in the yate/modules to include another two target 
lines:  

 
Conference.yate: LOCALLIBS = -L/usr/local/lib -lpkge 
Yrtpchan.yate: LOCALLIBS = -L/usr/local/lib -lpkge 

 
6. Run make and make install in the yate directory.  Make install may need the 

noapi option.  In this case run make install-noapi.   
 

7. Download and install the latest version of Pidgin.  Source and installation 
instructions (including dependencies) can be found at http://developer.pidgin.im.  
Make  sure it installs to /usr/local/. 

 
8. Download and Install X-Lite, which is freely available at 

http://www.counterpath.com/. 
 
9. Make sure the pidgin/plugins directory contains yate.c.  Run make yate.so.  Copy 

yate.so to /usr/local/lib/pidgin.   
 

10.  The installation is complete.  Each program should be runnable from the 
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command line.  Start yate first by typing ‘yate’ or ./run from the yate directory.  
Pidgin is invoked with Pidgin, and X-Lite from within its directory.   

 

C.2 Windows Installation 

Windows installation requires Cygwin [3] and MinGW [7] to be properly installed in 
C:\Program Files.  Microsoft Visual Studio is also required.  
 

1. Obtain the PKGE source, which is available in subversion from within Lincoln 
Laboratory, at http://subversion/svn/sgc/trunk/pkge.  

 

2. Add --output-def,pkge.def to the pkge.dll compile statement in the pkge 
Makefile. It should look something like this now:  

pkge.dll: libpkge.a 
  $(CC) -shared -o pkge.dll \ 
   -Wl,--output-def,pkge.def,--out-implib=libpkge.dll.a \ 
   -Wl,--export-all-symbols \ 
   -Wl,--enable-auto-import \ 
   -Wl,--whole-archive ${pack_libs} \ 
   -Wl,--no-whole-archive ${link_libs} \ 
   -Wl,--kill-at \ 
   $(LDFLAGS) 
 

3. Configure, make and install pkge 
 
4. Copy the pkge.dll file to C:\windows\system32.  Copy the pkge.def file to the 

visual studio subdirectory VC\include.  Copy the pkge header directory from 
mingw/include/pkge to VC\include. 

 

5. Use the Visual Studio tool lib (probably in VC\bin) to create a .lib file that VS 
can use (it can't use libpkge.a). At a command line type:  

vcvarsall.bat  
lib /machine:i386 /def:pkge.def 

  
 
 

Move this pkge.lib file to VC\lib  
 

6. Obtain the modified YATE files from svn as in step 2 of the linux instructions.  
The source files all end in LF characters rather than CRLF, which is needed by 
visual studio.  WinZip should let you make this conversion, if not, use Wordpad.  
Open the YATE project in Visual Studio.  This file should be in the windows 
subdirectory of YATE. 
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7. In VS, link to PKGE by right-clicking the project, and selecting properties-
>Configuration Properties->Linker->Input. Add the full path of the pkge.lib.   

 
8. Now you can build YATE either for DEBUG or RELEASE. Certain modules can 

be omitted from the build, if they don’t compile due to dependencies.  These are: 
h323chan, gsmcodec, wpchan, Gtk2Client , mysqldb, and pgsqldb.  

 
9. Obtain Pidgin, either from subversion or from the Pidgin website.  If from the 

Pidgin website, obtain yate.c from subversion and put in the pidgin/plug-ins 
directory.   

 
10. Install Pidgin according to the instructions on its website.  Run make yate.dll 

from the pidgin/plugins directory.  Move yate.dll into the pidgin/win32-install-
directory/plugins.  

 
11. Obtain and install X-LITE from http://www.counterpath.com. 
 
12. All components are now installed.  Run YATE first by double-clicking the yate-

console application in the Release or Debug subdirectory of yate/windows.  Then 
run Pidgin and X-Lite. 

 

C.3 Running Information 

There are a few pieces of information necessary to properly run the system.   

1. The yate plug-in must be loaded in Pidgin.   

2.   The PKGE directory must have a system generated.   This includes the PKI for 
the conference.  This system is referenced in conference.conf in yate/conf.d or 
yate/windows/conf.d. 

3. After loading X-Lite, users must “dial-in” to the conference system by dialing 1.  
X-Lite must also be configured properly.  This includes changing the SIP proxy in 
the configuration menu to the local host with port 5066, and changing the 
username and password to one referenced in regfile.conf in the conf.d directory. 
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Appendix D Related Work 

Before embarking on the design and development journey, we carried out a thorough 
examination of related projects.  Such an evaluation allowed us to borrow concepts and 
code.  Specifically, we focused on secure VoIP systems to ascertain how security is 
added in existing commercial products, and how such methodologies could be improved.  
We assess the advantages and disadvantages for each approach, noting what is relevant 
and useful in our project.      
 

D.1 Skype  

Skype [11] is a free but closed-source, proprietary VoIP system.  Users download and run 
the client software, which performs all of the processing, including audio compression 
and decompression, call signaling, and encryption.  Voice data is transmitted from peer-
to-peer on the Skype network, but protocols used are engineered by Skype, and are not 
released to the public.  According to the FAQ in [11], call encryption is done from end-
to-end using 256-bit Advanced Encryption Standard (AES) keys.  The keys themselves 
are exchanged using 1024 bit RSA encryption.  Moreover, Skype allows encrypted 
conferences to take place as well. 
 
On this basis, Skype has a number of desirable features for our system.  End-to-end 
encryption is valued; however, the trust model still extends beyond the conversing parties 
because Skype user public keys are certified by Skype servers.  Similarly, because the 
protocols are closed and Skype takes measures to prevent reverse-engineering, users must 
trust Skype not to do anything malicious.  Because our system should be versatile for any 
number of uses, it makes the most sense for it to rely on as little outside trust as possible.   
 
Moreover, conference calls exist only as long as the host party remains active.  The 
dynamic system that we develop should not crash when one of the parties leaves.  
Consider the case of a call network among fighter pilots.  Any one of the pilots might 
leave to refuel or separate from the group at anytime. The system would sacrifice a lot of 
usability if it had to be restarted every time the host leaves.   
 
Skype has a number of properties that are difficult to assess.  For example, it is not clear 
whether conference encryption uses a shared group key (like PKGE) or if conference 
encryption is point to point between the host and each user.  The latter case suggests the 
need for a lot of overhead to encrypt data to each user separately.  If a group key is used, 
the closed nature of the protocol makes it hard to determine if the system offers forward 
and backward secrecy.  That is, if a user leaves the conference, it is not clear if she/he can 
still eavesdrop on the conversation. 
 
Also, as noted in [42], Skype does not release any information about key exchange 
algorithms or any significant detail about its encryption and authentication 
implementation.  Thus, it is hard to make any concrete conclusions, and it seems unwise 
to assume that everything it implemented properly and securely.  As mentioned in [42], 
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Skype might use encryption, but use it poorly.  
 
Thus, Skype presents a promising model because it offers encrypted conference calls, 
however, it has several features that our system must improves upon.   

D.2 Zfone 

Zfone [15] is a VoIP product developed to add security to existing VoIP systems.  It 
detects call setup between two parties, and negotiates encryption key exchange in the 
media stream.  Call data can then be encrypted and decrypted.  Zfone is available as a 
plug-in for a number of VoIP programs, including Gizmo [13] and Asterisk [1].   
 
Zfone uses the ZRTP protocol [39], which is an extension to Real-time Transport 
Protocol (RTP) [31] that provides a key exchange on initiation and subsequent 
encryption.  The key exchange does not rely on certificates, servers, or third parties of 
any kind; it is strictly peer-to-peer.  Nevertheless, Zfone claims immunity from man in 
the middle attacks [15].   
 
On the plus side, Zfone has a very narrow trust model, making it useful regardless of the 
level of trust that is granted to operators of the VoIP network.  However, because Zfone 
is point to point, support for conference calls is difficult.  It can support encryption of any 
number of RTP streams, however, each RTP stream is independent.  Thus, in a peer-to-
peer conference containing four parties, there are six connections and six key exchanges.  
In a VoIP conference containing six parties, there are 15 exchanges.  This O(n2) rate of 
growth will likely slow down the system as size increases.   
 
Thus, Zfone provides an attractive trust model, but makes conference calls costly to 
setup.  Its success as a peer-to-peer protocol (much like Skype’s) indicates that our 
system may benefit from such a model.   

D.3 WAVE 

WAVE [44], [45] is a proprietary, closed-source system that uses a client/server model 
for VoIP conferencing.  That is, endpoints participating in a conference transmit their 
voice data to WAVE Media Servers, which mix the voice signal and pass it back to users.   
 
WAVE documentation does not mention security; however, WAVE is included in the 
review of relevant technologies because of its clever use of multicast to avoid network 
congestion.  WAVE claims usefulness in disadvantaged networks under heavy traffic 
because the multicast model minimizes the amount of traffic on any given link.  In short, 
multicast works by transmitting a single stream of data over a network link when there 
are multiple recipients on the other side.  This way, bandwidth usage is minimized.  Our 
conference model will take inspiration from this and optimize for disadvantaged 
networks.   
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